Skip to main content
Log in

Stress, stress asymmetry and couple stress: from discrete particles to continuous fields

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Explicit and closed expressions for the stress and couple-stress fields for discrete (classical) mechanical systems in terms of the constituents’ degrees of freedom and interactions are derived and compared to previous results. This is done by using an exact and general coarse graining formulation, which allows one to predetermine the resolution of the continuum fields. Since the full dynamics of the pertinent fields is considered, the results are not restricted to static states or quasi-static deformations; the latter comprise mere limiting cases, which are discussed as well. The fields automatically satisfy the equations of continuum mechanics. An explicit expression for the antisymmetric part of the stress field is presented; the question whether the latter vanishes, much like its nature when it does not, have been debated in the literature. Physical explanations of some of the obtained results are offered; in particular, an interpretation of the expression for the stress field provides an argument in favor of its uniqueness, yet another topic of debate in the literature. The formulation and results are valid for single realizations, and can of course be used in conjunction with ensemble averaging. Part of the paper is devoted to a biased discussion of the notion of coarse graining in general, in order to set the presented results in a certain perspective. Although the results can be applied to molecular (nanoscale included) and granular systems alike, the presentation and some simplifying assumptions (which can be easily relaxed) target granular systems. The results should be useful for the analysis of experimental and numerical findings as well as the development of constitutive relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Irving J.H., Kirkwood J.G.: The statistical mechanical theory of transport properties IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  2. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford (1954, reissue 2000)

  3. Reichl, L.E.: A Modern Course in Statistical Physics. Wiley and numerous references therein (1998)

  4. Weber J.: Recherches concernantes les contraintes intergranulaires dans les milieux pulvérantes. Bull. de Liais P. C. 20, 1–31 (1966)

    Google Scholar 

  5. Cambou B., Dubujet P., Emeriault F., Sidoroff F.: Homogenization for granular media. Eur. J. Mech. A Solids 14, 255–276 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Chang C.S., Gao J.: Kinematic and static hypotheses for constitutive modeling of granulates considering particle rotation. Acta Mech. 115, 213–229 (1996)

    Article  MATH  Google Scholar 

  7. Bagi K.: Stress and strain in granular assemblies. Mech. Mat. 22(3), 165–177 (1996)

    Article  Google Scholar 

  8. Babic M.: Average balance equations for granular materials. Int. J. Eng. Sci. 35, 523–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goddard J.D.: Continuum modeling of granular assemblies: quasi-static dilatancy and yield. In: Herrmann, H.J., Hovi, J.-P., Luding, S. (eds) Physics of Dry Granular Media, pp. 1–24. Kluwer, Dordrecht (1998)

    Google Scholar 

  10. Nemat-Nasser S.: A micromechanically-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids 48, 1541–1563 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Lätzel M., Luding S., Herrmann H.J.: From discontinuous models towards a continuum description. In: Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Luding, S., Ramm, E. (eds) Continuous and Discontinuous Models of Cohesive-Frictional Materials, Lecture Notes in Physics 568, pp. 215–230. Springer, Berlin (2001)

    Chapter  Google Scholar 

  12. Bardet J.P., Vardoulakis I.: The asymmetry of stress in granular media. Int. J. Solids Struct. 38, 353–367 (2001)

    Article  MATH  Google Scholar 

  13. Zhu H.P., Yu A.B.: Averaging method for granular materials. Phys. Rev. E 66, 021302 (2002)

    ADS  Google Scholar 

  14. Ball R.C., Blumenfeld R.: Stress field in granular systems, loop forces and potential formulation. Phys. Rev. Lett. 88, 115505 (2002)

    Article  ADS  Google Scholar 

  15. Ehlers W., Ramm E., Diebels S., D’Addetta G.A.: From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kruyt N.P., Rothenburg L.: Kinematic and static assumptions for homogenization in micromechanics of granular media. Mech. Mater. 36(22), 1157–1173 (2004)

    Article  Google Scholar 

  17. Froiio F., Tomassetti G., Vardoulakis I.: Mechanics of granular materials: the discrete and continuum descriptions juxtaposed. Int. J. Solids Struct. 43, 7684–7720 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goddard J.D.: From granular matter to generalized continuum. In: Capriz, G., Giovine, P., Mariano, P.M. (eds) Mathematical Models of Granular Matter, Lecture Notes in Applied Mathematics, vol. 1937, Ch. 1, pp. 1–20. Springer, Berlin (2008)

    Google Scholar 

  19. Goddard J.D.: Microstructural origins of continuum stress fields—a brief history and some unresolved issues. In: DeKee, D., Kaloni, P.N. (eds) Recent Developments in Structured Continua, Pitman Research Notes in Mathematics, No. 143, pp. 179–208. Longman/ Wiley, New York (1986)

    Google Scholar 

  20. Goldhirsch I.: Rapid granular flows. Ann. Rev. Fluid Mech. 35, 267–293 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  21. Glasser B.J., Goldhirsch I.: Scale dependence, correlations and fluctuations of stresses in rapid granular flows. Phys. Fluids 13, 407–420 (2001)

    Article  ADS  Google Scholar 

  22. Love A.E.H.: Treatise of Mathematical Theory of Elasticity. Cambridge, UP, London (1927)

    MATH  Google Scholar 

  23. Voigt W.: Theoretische Studien über die Elasticitätverhhältnisse der Krystalle. Abhandt. Ges. Wiss. Gött. 34, 3–52 (1887)

    Google Scholar 

  24. Goldenberg C., Goldhirsch I.: Continuum mechanics for small systems and fine resolutions. In: Rieth, M., Schommers, W. (eds) Handbook of Theoretical and Computational Nanotechnology, pp. 330–386. American Scientific, New York (2006)

    Google Scholar 

  25. Murdoch A.I.: On the microscopic interpretation of stress and couple stress. J. Elast. 71(1–3), 105–131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Murdoch A.I.: A critique of atomistic definitions of the stress tensor. J. Elast. 88(2), 113–140 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Goldhirsch I., Goldenberg C.: On the microscopic foundations of elasticity. Eur. Phys. J. E 9(3), 245–251 (2002)

    Google Scholar 

  28. Goldenberg C., Goldhirsch I.: Small and large scale granular statics. Granul. Matter 6(2–3), 87–96 (2004)

    Article  MATH  Google Scholar 

  29. Goldhirsch I., Goldenberg C.: Stress in dense granular materials. In: Wolf, D.E., Hinrichsen, H. (eds) The Physics of Granular Media, pp. 3–22. Wiley, Weinheim (2004)

    Google Scholar 

  30. Schofield P., Henderson J.R.: Statistical mechanics of inhomogeneous fluids. Prof. R. Soc. Lond. Ser. A 379(1776), 231–246 (1982)

    Article  MATH  ADS  Google Scholar 

  31. Wajnryb E., Altenberger A.R., Dahler J.S.: Uniqueness of the microscopic stress tensor. J. Chem. Phys. 103, 9782–9787 (1995)

    Article  ADS  Google Scholar 

  32. Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge, UP, Cambridge (1967)

    MATH  Google Scholar 

  33. Goldenberg C., Atman A.P.F., Claudin P., Combe G., Goldhirsch I.: Scale separation in granular packings: stress plateaus and fluctuations. Phys. Rev. Lett. 96(16), 168001 (2006)

    Article  ADS  Google Scholar 

  34. Goldenberg C., Goldhirsch I.: Effects of friction and disorder on the quasistatic response of granular solids to a localized force. Phys. Rev. E 77(4), 041303 (2008)

    ADS  Google Scholar 

  35. Tan M.-L., Goldhirsch I.: Rapid granular flows as mesoscopic systems. Phys. Rev. Lett. 81(14), 3022–3025 (1998)

    Article  ADS  Google Scholar 

  36. Arslan H., Sture S.: Evaluation of a physical length scale for granular materials. Comput. Mater. Sci. 42, 525–530 (2008)

    Article  Google Scholar 

  37. Eringen A.C.: Theory of micropolar elasticity. In: Leibowitz, H. (eds) Fracture: An Advanced Treatise, vol. I, Mathematical Fundamentals, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  38. Cercignani C.: The Boltzmann Equation and Its Applications, Ser. “Applied Mathematical Sciences”, No. 67. Springer, Berlin (1988)

    Google Scholar 

  39. Goldhirsch I.: Scales and kinetics of granular flows. CHAOS 9(3), 659–672 (1999)

    Article  MATH  ADS  Google Scholar 

  40. Goldenberg C., Goldhirsch I.: Friction enhances elasticity in granular solids. Nature 435(7039), 188–191 (2005)

    Article  ADS  Google Scholar 

  41. Zhang, J., Behringer, R.P., Goldhirsch, I.: Coarse graining of a physical granular system. Prog. Theor. Phys. Suppl. (2010, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Goldhirsch.

Additional information

The author gratefully acknowledges partial support from the Israel Science Foundation, grant No. 412/08 and the US-Israel Binational Science Foundation, grant No. 2004391.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldhirsch, I. Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granular Matter 12, 239–252 (2010). https://doi.org/10.1007/s10035-010-0181-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0181-z

Keywords

Navigation