Skip to main content
Log in

Statistical properties of a 2D granular material subjected to cyclic shear

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This work focuses on the evolution of structure and stress for an experimental system of 2D photoelastic particles that is subjected to multiple cycles of pure shear. Throughout this process, we determine the contact network and the contact forces using particle tracking and photoelastic techniques. These data yield the fabric and stress tensors and the distributions of contact forces in the normal and tangential directions. We then find that there is, to a reasonable approximation, a functional relation between the system pressure, P, and the mean contact number, Z. This relationship applies to the shear stress τ, except for the strains in the immediate vicinity of the contact network reversal. By contrast, quantities such as P, τ and Z are strongly hysteretic functions of the strain, ε. We find that the distributions of normal and tangential forces, when expressed in terms of the appropriate means, are essentially independent of strain. We close by analyzing a subset of shear data in terms of strong and weak force networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu A.J., Nagel S.R.: Jamming is not just cool any more. Nature 396, 21 (1998)

    Article  ADS  Google Scholar 

  2. O’Hern C.S., Langer S.A., Liu A.J., Nagel S.R.: Random packings of frictionless particles. Phys. Rev. Lett. 88, 075507 (2002)

    Article  ADS  Google Scholar 

  3. Donev A., Stillinger F.H., Torquato S.: Do binary hard disks exhibit an ideal glass transition?. Phys. Rev. Lett. 96, 225502 (2006)

    Article  ADS  Google Scholar 

  4. Ball R.C., Blumenfeld R.: Stress field in granular systems: loop forces and potential formulation. Phys. Rev. Lett. 88, 115505 (2002)

    Article  ADS  Google Scholar 

  5. Henkes S., Chakraborty B.: Jamming as a critical phenomenon: a field theory of zero-temperature grain packings. Phys. Rev. Lett. 95(19), 198002 (2005)

    Article  ADS  Google Scholar 

  6. Edwards S., Oakeshott R.: Theory of powders. Physica A 157, 1080 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  7. Snoeijer J.H., Vlugt T.J.H., van Hecke M., Saarloos W.: Force network ensemble: a new approach to static granular matter. Phys. Rev. Lett. 92, 054302 (2004)

    Article  ADS  Google Scholar 

  8. Tighe B.P., van Eerd A.R.T., Vlugt T.J.H.: Entropy maximization in the force network ensemble for granular solids. Phys. Rev. Lett. 100, 238001 (2008)

    Article  ADS  Google Scholar 

  9. Song C., Wang P., Makse H.A.: A phase diagram for jammed matter. Nature 453, 629 (2008)

    Article  ADS  Google Scholar 

  10. Chakraborty B., Behringer R.P.: Jamming of granular matter. Encycl. Complex. Sys. Sci. 39, 4997–5021 (2009)

    Article  Google Scholar 

  11. van Hecke M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.: Cond. Matt. 22, 033101 (2010)

    Article  ADS  Google Scholar 

  12. Tordesillas A., Zhang J., Behringer R.P.: Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoengin. 4, 3 (2009)

    Article  Google Scholar 

  13. Majmudar T., Sperl M., Luding S., Behringer R.: Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007)

    Article  ADS  Google Scholar 

  14. Wakabayashi T.: Photo-elastic method for determination of stress in powdered mass. J. Phys. Soc. Jpn. 5, 383–385 (1955)

    Article  ADS  Google Scholar 

  15. Dantu P.: Contribution a l’etude mecanique et geometrique des milieux pulverulents. Proc. 4th Int. Conf. Soil Mech. Found. Eng. 1, 144 (1957)

    Google Scholar 

  16. Drescher A., de Jong G.D.J.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20, 337 (1972)

    Article  ADS  Google Scholar 

  17. Majmudar T., Behringer R.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079 (2005)

    Article  ADS  Google Scholar 

  18. Majmudar, T.: Experimental studies of two-dimensional granular systems using grain-scale contact force measurements. Ph.D. thesis, Duke University (2006)

  19. Howell D.W., Behringer R., Veje C.: Stress fluctuations in a 2D granular couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)

    Article  ADS  Google Scholar 

  20. Veje C., Howell D.W., Behringer R.: Kinematics of a twodimensional granular couette experiment at the transition to shearing. Phys. Rev. E 59, 739 (1999)

    Article  ADS  Google Scholar 

  21. Utter B., Behringer R.: Transients in sheared granular matter. Eur. Phys. J. E 14, 373–380 (2004)

    Article  Google Scholar 

  22. Utter B., Behringer R.: Self-diffusion in dense granular shear flows. Phys. Rev. E 69, 031308 (2004)

    Article  ADS  Google Scholar 

  23. Utter B., Behringer R.: Experimental measures of affine and nonaffine deformation in granular shear. Phys. Rev. Lett. 100, 208302 (2008)

    Article  ADS  Google Scholar 

  24. Tordesillas A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philos. Mag. 87, 4987 (2007)

    Article  ADS  Google Scholar 

  25. Tordesillas A., Muthuswamy M.: A thermomicromechanical approach to multiscale continuum modelling of dense granular systems. Acta Geotech. 3, 225 (2008)

    Article  Google Scholar 

  26. Miller B., O’Hern C., Behringer R.: Stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett. 77, 3110–3113 (1996)

    Article  ADS  Google Scholar 

  27. Alonso-Marroquin F., Vardoulakis I., Herrmann H.J., Weatherley D., Mora P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 031306 (2006)

    Article  ADS  Google Scholar 

  28. Muthuswamy, M., Tordesillas, A.: How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies? J. Stat. Mech. Theory Exp. P09003 (2006)

  29. Peters J.F., Muthuswamy M., Wibowo J., Tordesillas A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041307 (2005)

    Article  ADS  Google Scholar 

  30. Thornton C., Zhang L.: A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos. Mag. 86, 3425 (2006)

    Article  ADS  Google Scholar 

  31. Oda M., Konishi J., Nemat-Nasser S.: Some experimentally based fundamental results on the mechanical behaviour of granular materials. Geotechnique 30, 479 (1980)

    Article  Google Scholar 

  32. Oda M., Kazama H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48, 465 (1998)

    Article  Google Scholar 

  33. Iwashita K., Oda M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192 (2000)

    Article  Google Scholar 

  34. Oda M., Takemura T., Takahashi M.: Microstructure in shear band observed by microfocus X-ray computed tomography. Geotechnique 54, 539 (2004)

    Google Scholar 

  35. Tordesillas A., Muthuswamy M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57, 706 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Hunt G., Tordesillas A., Green S., Shi J.: Force chain buckling in granular media: a structural mechanics perspective. Philos. Trans. Royal Soc. 368, 249–262 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Majmudar, T.S., Tordesillas, A. et al. Statistical properties of a 2D granular material subjected to cyclic shear. Granular Matter 12, 159–172 (2010). https://doi.org/10.1007/s10035-010-0170-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0170-2

Keywords

Navigation