Skip to main content
Log in

Granular packing: numerical simulation and the characterisation of the effect of particle shape

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The packing of granular particles is investigated using a combined finite-discrete element approach. One of the aims of this paper is to present an application of a recently improved numerical simulation technique for deformable granular material with arbitrary shapes. Our study is focused on the influence of the effect of the particle shape on (1) the emergent properties of a granular pack (packing density, coordination number, force distribution), and on (2) the spatial distribution of the stress. A set of simulations that mimick the sedimentation process is carried out, with varying input parameters, such as contact friction and particle shape. It is shown that the eccentricity of the particles not only significantly influences the final density of the pack but also the distribution of the stress and the contact forces. The presence of surface friction increases the amount of disorder within the granular system. Stress heterogeneities and force chain patterns propagate through the particles more efficiently than for the frictionless systems. The results also suggest that for the monodisperse systems investigated the coordination number is one of the factors that controls the distribution of the stress within a granular medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cleary P.W., Sawley M.L.: Dem modelling of industrial granular flows: 3d case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)

    Article  MATH  Google Scholar 

  2. Coppersmith S.N., Liu Ch., Majumdar S., Narayan O., Witten T.A.: Model for force fluctuations in bead packs. Phys. Rev. E 53(5), 4673 (1996)

    Article  ADS  Google Scholar 

  3. Cundall P., Strack O.: A discrete numerical model for granular assemblies. Geotechnique 29, 47 (1979)

    Article  Google Scholar 

  4. Donev A., Cisse I., Sachs D., Variano E.A., Stillinger F.H., Connelly R., Torquato S., Chaikin P.M.: Improving the density of jammed disordered packings using ellipsoids. Science 303(5660), 990–993 (2004)

    Article  ADS  Google Scholar 

  5. Geng J., Howell D., Longhi E., Behringer R.P., Reydellet G., Vanel L., Clément E., Luding S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87(3), 035,506 (2001)

    Article  Google Scholar 

  6. Gethin D.T., Yang X.S., Lewis R.W.: A two dimensional combined discrete and finite element scheme for simulating the flow and compaction of systems comprising irregular particulates. Comput. Methods Appl. Mech. Eng. 195(41–43), 5552–5565 (2006)

    Article  MATH  Google Scholar 

  7. Latham J.P., Munjiza A.: The modelling of particle systems with real shapes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362, 1953–1972 (1822). doi:10.1098/rsta.2004.1425

    Article  ADS  MathSciNet  Google Scholar 

  8. Latham J.-P., Munjiza A., Garcia X., Xiang J., Guises R.: Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation. Miner. Eng. 21(11), 797–805 (2008)

    Article  Google Scholar 

  9. Lian G., Thornton C., Adams M.J.: Discrete particle simulation of agglomerate impact coalescence. Chem. Eng. Sci. 53(19), 3381–3391 (1998)

    Article  Google Scholar 

  10. Majmudar T.S., Behringer R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(1079), 1079–1082 (2005)

    Article  ADS  Google Scholar 

  11. Mueth D.M., Jaeger H.M., Nagel S.R.: Force distribution in a granular medium. Phys. Rev. E 57(3), 3164 (1998)

    Article  ADS  Google Scholar 

  12. Munjiza A.: The Combined Finite-Discrete Element Method. Wiley, New York (2004)

    Book  Google Scholar 

  13. Munjiza A., Andrews K.R.F.: NBS contact detection algorithm for bodies of similar size. Int. J. Numer. Methods Eng. 43(1), 131–149 (1998)

    Article  MATH  Google Scholar 

  14. Munjiza A., Andrews K.R.F.: Penalty function method for combined finite-discrete element systems comprising large number of separate bodies. Int. J. Numer. Methods Eng. 49(11), 1377–1396 (2000)

    Article  MATH  Google Scholar 

  15. Ostojic S., Somfai E., Nienhuis B.: Scale invariance and universality of force networks in static granular matter. Nature 439(7078), 828–830 (2006)

    Article  ADS  Google Scholar 

  16. Radjai F., Jean M., Moreau J.J., Roux S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77(2), 274 (1996)

    Article  ADS  Google Scholar 

  17. Roux J.N.: Geometric origin of mechanical properties of granular materials. Phys. Rev. E 61(6), 6802 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. Silbert L.E., Grest G.S., Landry J.W.: Statistics of the contact network in frictional and frictionless granular packings. Phys. Rev. E 66(6), 061,303 (2002)

    Article  Google Scholar 

  19. Thornton C., Antony S.J.: Quasi-static deformation of particulate media. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 356(1747), 2763–2782 (1998). doi:10.1098/rsta.1998.0296

    Article  MATH  ADS  Google Scholar 

  20. Williams J., Pentland A.: Super-quadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. Int. J. Comput. Aided Eng. 9, 115–127 (1992)

    Article  Google Scholar 

  21. Wouterse, A., Williams, S.R., Philipse, A.P.: Effect of particle shape on the density and microstructure of random packings. J. Phys.: Condens. Matter 19 406215, 14pp (2007). doi:10.1088/0953-8984/19/40/406215

  22. Xiang, X., Munjiza, A., Latham, J.P., Guises, R.: Effect of particle shape on the density and microstructure of random packings. Eng. Comput. (2008, submitted)

  23. Zuriguel I., Mullin T., Rotter J.M.: Effect of particle shape on the stress dip under a sandpile. Phys. Rev. Lett. 98(2), 028,001–028,004 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Guises.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guises, R., Xiang, J., Latham, JP. et al. Granular packing: numerical simulation and the characterisation of the effect of particle shape. Granular Matter 11, 281–292 (2009). https://doi.org/10.1007/s10035-009-0148-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-009-0148-0

Keywords

Navigation