Skip to main content
Log in

Close-packed granular clusters: hydrostatics and persistent Gaussian fluctuations

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Dense granular clusters often behave like macro-particles. We address this interesting phenomenon in a model system of inelastically colliding hard disks inside a circular box, driven by a thermal wall at zero gravity. Molecular dynamics simulations show a close-packed cluster of almost circular shape, weakly fluctuating in space and isolated from the driving wall by a low-density gas. The density profile of the system agrees very well with the azimuthally symmetric solution of granular hydrostatic equations employing constitutive relations by Grossman et al., whereas the widely used Enskog-type constitutive relations show poor accuracy. We find that fluctuations of the center of mass of the system are Gaussian. This suggests an effective Langevin description in terms of a macro-particle, confined by a harmonic potential and driven by delta-correlated noise. Surprisingly, the fluctuations persist when increasing the number of particles in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrat A. and Trizac E. (2003). A molecular dynamics ‘Maxwell Demon’ experiment for granular mixtures. Mol. Phys. 101: 1713

    Article  Google Scholar 

  2. Bizon C., Shattuck M.D., Swift J.B. and Swinney H.L. (1999). Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60: 4340

    Article  ADS  Google Scholar 

  3. Brey J.J., Dufty J.W., Kim C.S. and Santos A. (1998). Hydrodynamics for granular flow at low density. Phys. Rev. E 58: 4638

    Article  ADS  Google Scholar 

  4. Brey J.J., Domínguez A., García~de Soria M.I. and Maynar P. (2006). Mesoscopic theory of critical fluctuations in isolated granular gases. Phys. Rev. Lett. 96: 158,002

    Article  Google Scholar 

  5. Brilliantov N.V. and Pöschel T. (2004). Kinetic Theory of Granular Gases. Clarendon Press, Oxford

    MATH  Google Scholar 

  6. Campbell C. (1990). Rapid granular flows. Annu. Rev. Fluid Mech. 22: 57

    Article  ADS  Google Scholar 

  7. Chaikin P. (2000). Thermodynamics and hydrodynamics of hard spheres; the role of gravity. In: Cates, M.E. and Evans, M.R. (eds) Soft and Fragile Matter. Nonequilibrium Dynamics, Metastability and Flow, pp 315. IOP, Bristol

    Google Scholar 

  8. Díez-Minguito M. and Meerson B. (2007). Phase separation of a driven granular gas in annular geometry. Phys. Rev. E 75: 011,304

    Article  Google Scholar 

  9. Esipov S.E. and Pöschel T. (1997). The granular phase diagram. J. Stat. Phys. 86: 1385

    Article  MATH  Google Scholar 

  10. Gardiner C.W. (2004). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Heidelberg

    Google Scholar 

  11. Goldhirsch I. (2003). Rapid granular flows. Annu. Rev. Fluid Mech. 35: 267, and references therein

    Article  ADS  MathSciNet  Google Scholar 

  12. Goldman D.I., Swift J.B. and Swinney H.L. (2004). Noise, coherent fluctuations, and the onset of order in an oscillated granular fluid. Phys. Rev. Lett. 92: 174,302

    Google Scholar 

  13. Grossman E.L., Zhou T. and Ben-Naim E. (1997). Towards granular hydrodynamics in two dimensions. Phys. Rev. E 55: 4200

    Article  ADS  Google Scholar 

  14. Jenkins J.T. and Richman M.W. (1985). Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28: 3485

    Article  MATH  ADS  Google Scholar 

  15. Kadanoff L. (1999). Built on sand. Rev. Mod. Phys. 71: 435

    Article  ADS  Google Scholar 

  16. Khain E. and Meerson B. (2002). Symmetry-breaking instability in a prototypical driven granular gas. Phys. Rev. E 66: 021,306

    Article  MathSciNet  Google Scholar 

  17. Khain E., Meerson B. and Sasorov P.V. (2004). Phase diagram of van der Waals-like phase separation in a driven granular gas. Phys. Rev. E 70: 051,310

    Article  Google Scholar 

  18. Landau L.D. and Lifshitz E.M. (1980). Statistical Mechanics, Part 2. Pergamon Press, Oxford

    Google Scholar 

  19. Livne E., Meerson B. and Sasorov P.V. (2002). Symmetry breaking and coarsening of clusters in a prototypical driven granular gas. Phys. Rev. E 66: 50,301

    Article  Google Scholar 

  20. Livne E., Meerson B. and Sasorov P.V. (2002). Symmetry-breaking instability and strongly peaked periodic clustering states in a driven granular gas. Phys. Rev. E 65: 021,302

    Article  Google Scholar 

  21. Lutsko J.F. (2005). Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E 72: 021,306

    Article  Google Scholar 

  22. Meerson B., Pöschel T. and Bromberg Y. (2003). Close-packed floating clusters: Granular hydrodynamics beyond the freezing point? Phys. Rev. Lett. 91: 24,301

    Article  Google Scholar 

  23. Meerson B., Pöschel T., Sasorov P.V. and Schwager T. (2004). Giant fluctuations at a granular phase separation threshold. Phys. Rev. E 69: 21,302

    Google Scholar 

  24. Pöschel T. and Schwager T. (2005). Computational Granular Dynamics. Springer, Heidelberg

    Google Scholar 

  25. Pöschel T., Brilliantov N.V. and Schwager T. (2002). Violation of Molecular Chaos in dissipative gases. Int. J. Mod. Phys. C 13: 1263

    Article  ADS  Google Scholar 

  26. Sela N. and Goldhirsch I. (1998). Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech. 361: 41

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Soto R., Piasecki J. and Mareschal M. (2001). Precollisional velocity correlations in a hard-disk fluid with dissipative collisions. Phys. Rev. E 64: 031,306

    Article  Google Scholar 

  28. Wainwright T., Alder B.J. and Gass D.M. (1971). Decay of time correlations in two dimensions. Phys. Rev. A 4: 233

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Pöschel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meerson, B., Díez-Minguito, M., Schwager, T. et al. Close-packed granular clusters: hydrostatics and persistent Gaussian fluctuations. Granular Matter 10, 21–27 (2007). https://doi.org/10.1007/s10035-007-0055-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0055-1

Keywords

Navigation