Skip to main content
Log in

The spreading of a granular mass: role of grain properties and initial conditions

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present 2D numerical simulations of the collapse and spreading of granular columns for which the final geometry of the deposit and the runout distance are studied. Both the effects of the initial geometry and the effects of the details of the interactions between the grains are investigated. The scaling of the runout distance shows both a linear and a power-law dependence on the aspect ratio of the initial column, in agreement with previous findings (Balmforth and Kerswell in J. Fluid Mech. 538, 399–428, 2004; Lajeunesse et al. in Phys. Fluids 17, 103302, 2005; Lube et al. in Phys. Rev. E 72, 041301, 2005; Staron and Hinch in J. Fluid Mech. 545, 1–27, 2005), and independently of the value of the inter-grain friction. The latter controls the prefactor of the scaling, the effective frictional properties of the flow, and its internal structure. The non-trivial mass distribution induced by the initial geom- etry of the column strongly influences the dissipation process, and is believed to control the power-law dependence of the runout distance on the column aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aranson I.S. and Tsimring L.S. (2001). Continuum descrition of avalanches in granular media. Phys. Rev. E 64: R020301

    Article  ADS  Google Scholar 

  2. Balmforth N.J. and Kerswell R.R. (2004). Granular collapse in two dimensions. J. Fluid Mech. 538: 399–428

    Article  ADS  MathSciNet  Google Scholar 

  3. Cleary P.W. and Campbell C.S. (1993). Self-lubrication for long run-out landslides: examination by computer simulation. J. Geophys. Res. 98(21): 911–924

    Google Scholar 

  4. Cundall P. and Stack O. (1979). Geotechnique 29(1): 47

    Google Scholar 

  5. Dade W.B. and Huppert H.E. (1998). Long-runout rockfalls. Geology 26: 803–806

    Article  ADS  Google Scholar 

  6. Douady S., Andreotti B. and Daerr A. (1999). On granular surface flow equations. Eur. Phys. J. B 11: 131

    Article  ADS  Google Scholar 

  7. Gray J.M.N.T., Wieland M. and Hutter K. (1999). Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. Lond. 445: 1841–1874

    ADS  MathSciNet  Google Scholar 

  8. Iverson R.M. (1997). The physics of debris flows. Rev. Geophys. 35: 245–296

    Article  ADS  Google Scholar 

  9. Jean, M.: Frictional Contact in Rigid or Deformable Bodies: Numerical Simulation of geomaterials. pp. 463–486. In: Salvadurai, A.P.S., Boulon, J.M. (eds.) Elsevier, Amsterdam (1995)

  10. Lajeunesse E., Mangeney-Castelneau A. and Vilotte J.-P. (2004). Spreading of a granular mass on an horizontal plane. Phys. Fluids 16: 2731–2381

    Article  Google Scholar 

  11. Lajeunesse E., Monnier J.B. and Homsy G.M. (2005). Granular slumping on a horizontal surface. Phys. Fluids 17: 103302

    Article  ADS  Google Scholar 

  12. Larrieu, E., Staron, L., Hinch, E.J.: Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. (in press) (2005)

  13. Lube G., Huppert H.E., Sparks R.S.J. and Hallworth M.A. (2004). Axisymmetric collapses of granular columns. J. Fluid Mech. 508: 175–199

    Article  MATH  ADS  Google Scholar 

  14. Lube G., Huppert H.E., Sparks R.S.J. and Freundt A. (2005). Collapse of granular columns. Phys. Rev. E 72: 041301

    Article  ADS  Google Scholar 

  15. Lube, G., The flow and depositional mechanisms of granular matter, PhD Thesis, University of Kiel, Germany (2006)

  16. Midi G.D.R. (2004). On dense granular flows. Eur. Phys. J. E 14: 341–365

    Article  Google Scholar 

  17. Moreau J.-J. (1994). Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A/Solids 4: 93–114

    MathSciNet  Google Scholar 

  18. Pouliquen O. and Forterre Y. (2002). Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453: 133–151

    Article  MATH  ADS  Google Scholar 

  19. Rajchenbach J. (2000). Granular flows. Adv. Phys. 49(2): 229–256

    Article  ADS  Google Scholar 

  20. Savage S. and Hutter K. (1989). The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199: 177–215

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Staron L. and Hinch E.J. (2005). Study of the collapse of granular columns using two-dimensional discrete-grains simulation. J. Fluid Mech. 545: 1–27

    Article  MATH  ADS  Google Scholar 

  22. Zenit R. (2005). Computer simulations of the collapse of a granular column. Phys. Fluid 17: 031703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Staron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staron, L., Hinch, E.J. The spreading of a granular mass: role of grain properties and initial conditions. Granular Matter 9, 205–217 (2007). https://doi.org/10.1007/s10035-006-0033-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-006-0033-z

Keywords

Navigation