Skip to main content

Advertisement

Log in

Decomposition of Senesced Leaf Litter is Faster in Tall Compared to Low Birch Shrub Tundra

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Many Low Arctic tundra regions are currently undergoing a vegetation shift towards increasing growth and groundcover of tall deciduous shrubs due to recent climate warming. Vegetation change directly affects ecosystem carbon balance, but it can also affect soil biogeochemical cycling through physical and biological feedback mechanisms. Recent studies indicate that enhanced snow accumulation around relatively tall shrubs has negligible physical effect on litter decomposition rates. However, these investigations were no more than 3 years, and therefore may be insufficient to detect differences in inherently slow biogeochemical processes. Here, we report a 5-year study near Daring Lake, Canada, comparing Betula neoalaskana foliar litter decay rates within unmanipulated and snowfenced low-stature birch (height: ~ 0.3 m) plots to test the physical effect of experimentally deepened snow, and within tall birch (height: ~ 0.8 m) plots to test the combined physical and biological effects, that is, deepened snow plus strong birch dominance. Having corrected for carbon gain by the colonizing decomposers, actual litter carbon loss increased by approximately 25% in the tall birch relative to both low birch sites. Decay of lignin-like acid unhydrolizable litter residues also accelerated in the tall birch site, and a similar but lower magnitude response in the snowfenced low birch site indicated that physical effects of deepened snow were at least partially responsible. In contrast, deepened snow alone did not affect litter carbon loss. Our findings suggest that a combination of greater litter inputs, altered soil microbial community, enhanced soil nutrient pools, and warmer winter soils together promote relatively fast decomposition of recalcitrant litter carbon in tall birch shrub environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

REFERENCES

  • Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC. 2012. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species. Oecologia 170:809–19.

    Article  CAS  Google Scholar 

  • Ågren GI, Wetterstedt JAM. 2007. What determines the temperature response of soil organic matter decomposition? Soil Biol Biochem 39:1794–8.

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Ann Rev Plant Biol 54:519–46.

    Article  CAS  Google Scholar 

  • Bokhorst S, Metcalfe DB, Wardle DA. 2013. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol Biochem 62:157–64.

    Article  CAS  Google Scholar 

  • Buckeridge KM, Banerjee S, Siciliano SD, Grogan P. 2013. The seasonal pattern of soil microbial community structure in mesic Low Arctic tundra. Soil Biol Biochem 65:338–47.

    Article  CAS  Google Scholar 

  • Buckeridge KM, Cen YP, Layzell DB, Grogan P. 2010a. Soil biogeochemistry during the early spring in Low Arctic mesic tundra and the impacts of deepened snow and enhanced nitrogen availability. Biogeochemistry 99:127–41.

    Article  CAS  Google Scholar 

  • Buckeridge KM, Grogan P. 2008. Deepened snow alters soil microbial nutrient limitations in Arctic birch hummock tundra. Appl Soil Ecol 39:210–22.

    Article  Google Scholar 

  • Buckeridge KM, Grogan P. 2010. Deepened snow increases late thaw biogeochemical pulses in mesic Low Arctic tundra. Biogeochemistry 101:105–21.

    Article  Google Scholar 

  • Buckeridge KM, Zufelt E, Chu HY, Grogan P. 2010b. Soil nitrogen cycling rates in Low Arctic shrub tundra are enhanced by litter feedbacks. Plant Soil 330:407–21.

    Article  CAS  Google Scholar 

  • Chapin FS, Fetcher N, Kielland K, Everett KR, Linkins AE. 1988. Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology 69:693–702.

    Article  Google Scholar 

  • Chapin FS, Moilanen L. 1991. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72:709–15.

    Article  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711.

    Article  Google Scholar 

  • Chapin FS, Shaver GR, Mooney HA. 2002. Principles of terrestrial ecosystem ecology. New York, USA: Springer. p 529.

    Google Scholar 

  • Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM. 2005. Role of land-surface changes in Arctic summer warming. Science 310:657–60.

    Article  CAS  Google Scholar 

  • Christiansen CT, Haugwitz MS, Priemé A, Nielsen CS, Elberling B, Michelsen A, Grogan P, Blok D. 2017. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Global Change Biol 23:406–20.

    Article  Google Scholar 

  • Chu H, Grogan P. 2010. Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape. Plant Soil 329:411–20.

    Article  CAS  Google Scholar 

  • Chu HY, Neufeld JD, Walker VK, Grogan P. 2011. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a Low Arctic tundra landscape. Soil Sci Soc Am 75:1756–65.

    Article  CAS  Google Scholar 

  • Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvonen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Wetterstedt JAM, Bradford MA. 2011. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Global Change Biol 17:3392–404.

    Article  Google Scholar 

  • DeMarco J, Mack MC, Bret-Harte MS. 2011. The effects of snow, soil microenvironment, and soil organic matter quality on N availability in three Alaskan Arctic plant communities. Ecosystems 14:804–17.

    Article  CAS  Google Scholar 

  • DeMarco J, Mack MC, Bret-Harte MS. 2014a. Effects of Arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95:1861–75.

    Article  Google Scholar 

  • DeMarco J, Mack MC, Bret-Harte MS, Burton M, Shaver GR. 2014b. Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. Ecosphere 5:72.

    Article  Google Scholar 

  • Deslippe JR, Hartmann M, Mohn WW, Simard SW. 2011. Long-term experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Arctic tundra. Global Change Biol 17:1625–36.

    Article  Google Scholar 

  • Elberling B, Brandt KK. 2003. Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of Arctic C cycling. Soil Biol Biochem 35:263–72.

    Article  CAS  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Bjork RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jonsdottir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Levesque E, Magnusson B, May JL, Mercado-Diaz JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Schmidt NM, Shaver GR, Spasojevic MJ, Porhallsdottir PE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren CH, Walker X, Webber PJ, Welker JM, Wipf S. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–7.

    Article  Google Scholar 

  • Epstein HE, Raynolds MK, Walker DA, Bhatt US, Tucker CJ, Pinzon JE. 2012. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environ Res Lett 7:015506.

    Article  Google Scholar 

  • Erhagen B, Öquist M, Sparrman T, Haei M, Ilstedt U, Hedenström M, Schleucher J, Nilsson MB. 2013. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material. Global Change Biol 19:3858–71.

    Article  Google Scholar 

  • Forbes BC, Fauria MM, Zetterberg P. 2010. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biol 16:1542–54.

    Article  Google Scholar 

  • Goetz SJ, Bunn AG, Fiske GJ, Houghton RA. 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Nat Acad Sci 102:13521–5.

    Article  CAS  Google Scholar 

  • Grogan P. 2012. Cold season respiration across a Low Arctic landscape: the influence of vegetation type, snow depth, and interannual climatic variation. Arct Antarct Alp Res 44:446–56.

    Article  Google Scholar 

  • Hartley IP, Garnett MH, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Phoenix GK, Wookey PA. 2012. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Change 2:875–9.

    Article  CAS  Google Scholar 

  • Hernández DL, Hobbie SE. 2010. The effects of substrate composition, quantity, and diversity on microbial activity. Plant Soil 335:397–411.

    Article  Google Scholar 

  • Higuchi T. 1990. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63.

    Article  CAS  Google Scholar 

  • Hobbie SE. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–22.

    Article  Google Scholar 

  • Hobbie SE, Chapin FS. 1996. Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry 35:327–38.

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR. 2000. Controls over carbon storage and turnover in high-latitude soils. Global Change Biol 6:196–210.

    Article  Google Scholar 

  • Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70.

    Google Scholar 

  • Jia GS, Epstein HE, Walker DA. 2006. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Global Change Biol 12:42–55.

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV. 1999. Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic. Ecology 80:1828–43.

    Article  Google Scholar 

  • Ju J, Masek JG. 2016. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens Environ 176:1–16.

    Article  Google Scholar 

  • Kögel-Knabner I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–62.

    Article  Google Scholar 

  • Kuo S. 1996. Phosphorus. Sparks DL editor. Methods of soil analysis. Part 3: Chemical methods. Madison, WI, USA: Soil Science Society of America and American Society of Agronomy, pp 869–919.

  • Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–98.

    Article  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD. 1996. SAS© system for mixed models. Cary, North Carolina: SAS Institute Inc. pp 1–633.

    Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A. 2008. The global stoichiometry of litter nitrogen mineralization. Science 321:684–6.

    Article  CAS  Google Scholar 

  • Manzoni S, Trofymow JA, Jackson RB, Porporato A. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 80:89–106.

    Article  Google Scholar 

  • McLaren JR, Buckeridge KM, Weg MJ, Shaver GR, Schimel JP, Gough L. 2017. Shrub encroachment in Arctic tundra: Betula nana effects on above-and belowground litter decomposition. Ecology 98:1361–76.

    Article  Google Scholar 

  • McMahon SK, Wallenstein MD, Schimel JP. 2009. Microbial growth in Arctic tundra soil at -2 degrees C. Environ Microbiol Reports 1:162–6.

    Article  CAS  Google Scholar 

  • McMahon SK, Wallenstein MD, Schimel JP. 2011. A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling. Soil Biol Biochem 43:287–95.

    Article  CAS  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP. 2002. Temperature controls of microbial respiration in Arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–95.

    Article  CAS  Google Scholar 

  • Moore TR. 1984. Litter decomposition in a Subarctic spruce-lichen woodland, Eastern Canada. Ecology 65:299–308.

    Article  CAS  Google Scholar 

  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Levesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jorgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change 5:887–91.

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Menard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509.

    Article  Google Scholar 

  • Myers-Smith IH, Hik DS. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol Evol 3:3683–700.

    Article  Google Scholar 

  • Nobrega S, Grogan P. 2007. Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems 10:419–31.

    Article  CAS  Google Scholar 

  • Nobrega S, Grogan P. 2008. Landscape and ecosystem-level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian Low Arctic tundra. Ecosystems 11:377–96.

    Article  CAS  Google Scholar 

  • Öquist MG, Sparrman T, Klemedtsson L, Drotz SH, Grip H, Schleucher J, Nilsson M. 2009. Water availability controls microbial temperature responses in frozen soil CO2 production. Global Change Biol 15:2715–22.

    Article  Google Scholar 

  • Osono T. 2007. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–74.

    Article  Google Scholar 

  • Parker TC, Subke J-A, Wookey PA. 2015. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a Subarctic treeline. Global Change Biol 21:2070–81.

    Article  Google Scholar 

  • Parkinson JA, Allen SE. 1975. Wet oxidation procedure suitable for determination of nitrogen and mineral nutrients in biological-material. Commun Soil Sci Plant Anal 6:1–11.

    Article  CAS  Google Scholar 

  • Preston CM, Trofymow JA, Niu J, Sayer BG. 1997. 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–13.

    Article  CAS  Google Scholar 

  • Ryan MG, Melillo JM, Ricca A. 1990. A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20:166–71.

    Article  Google Scholar 

  • Saiz-Jimenez C. 1996. Chapter 1—The chemical structure of humic substances: recent advances. In: Piccolo A, Ed. Humic substances in terrestrial ecosystems. Amsterdam: Elsevier Science. p 1–44.

    Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–61.

    Article  CAS  Google Scholar 

  • Schimel JP, Bilbrough C, Welker JA. 2004. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem 36:217–27.

    Article  CAS  Google Scholar 

  • Schimel JP, Weintraub MN. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–63.

    Article  CAS  Google Scholar 

  • Schreeg LA, Mack MC, Turner BL. 2013. Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology 94:94–105.

    Article  Google Scholar 

  • Semenchuk PR, Elberling B, Amtorp C, Winkler J, Rumpf S, Michelsen A, Cooper EJ. 2015. Deeper snow alters soil nutrient availability and leaf nutrient status in High Arctic tundra. Biogeochemistry 124:81–94.

    Article  Google Scholar 

  • Shaver GR, Bret-Harte SM, Jones MH, Johnstone J, Gough L, Laundre J, Chapin FS. 2001. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82:3163–81.

    Article  Google Scholar 

  • Sørensen MV, Strimbeck R, Nystuen KO, Kapas RE, Enquist BJ, Graae BJ. 2017. Draining the pool? Carbon storage and fluxes in three Alpine plant communities. Ecosystems: 1–15.

  • Sturm M, McFadden JP, Liston GE, Chapin FS, Racine CH, Holmgren J. 2001. Snow-shrub interactions in Arctic tundra: a hypothesis with climatic implications. J Clim 14:336–44.

    Article  Google Scholar 

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE. 2005. Winter biological processes could help convert Arctic tundra to shrubland. Bioscience 55:17–26.

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biol 12:686–702.

    Article  Google Scholar 

  • Tremblay B, Levesque E, Boudreau S. 2012. Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik. Environ Res Lett 7:035501.

    Article  Google Scholar 

  • Vankoughnett MR, Grogan P. 2014. Nitrogen isotope tracer acquisition in low and tall birch tundra plant communities: a 2 year test of the snow–shrub hypothesis. Biogeochemistry 118:291–306.

    Article  CAS  Google Scholar 

  • Vankoughnett MR, Grogan P. 2016. Plant production and nitrogen accumulation above-and belowground in low and tall birch tundra communities: the influence of snow and litter. Plant Soil 408:195–210.

    Article  CAS  Google Scholar 

  • Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, Team C. 2005. The circumpolar Arctic vegetation map. J Veg Sci 16:267–82.

    Article  Google Scholar 

  • Walker MD, Walker DA, Welker JM, Arft AM, Bardsley T, Brooks PD, Fahnestock JT, Jones MH, Losleben M, Parsons AN, Seastedt TR, Turner PL. 1999. Long-term experimental manipulation of winter snow regime and summer temperature in Arctic and Alpine tundra. Hydrol Process 13:2315–30.

    Article  Google Scholar 

  • Wallenstein MD, McMahon S, Schimel J. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology 59:428–35.

    Article  CAS  Google Scholar 

  • Wickings K, Grandy AS, Reed SC, Cleveland CC. 2012. The origin of litter chemical complexity during decomposition. Ecol Lett 15:1180–8.

    Article  Google Scholar 

  • Wilmking M, Harden J, Tape K. 2006. Effect of tree line advance on carbon storage in NW Alaska. J Geophys Res Biogeosci 111:G02023.

    Article  Google Scholar 

  • Zamin TJ, Bret-Harte MS, Grogan P. 2014. Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian mesic Low Arctic tundra. J Ecol 102:749–66.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We are thankful for lab assistance from Yvette Chirinian, Olivia RoDee, and Samantha Miller. We also thank Mike Treberg and Robbie Hember for constructing the snowfences, and Karin Clark and Steve and Louise Matthews for logistical support at the Daring Lake TERS. Many helpful comments from two anonymous reviewers greatly improved the manuscript. This work was financed by NSERC and the Department of Environment and Natural Resources in the Government of the Northwest Territories. C.T.C. was financed by an Ontario Trillium scholarship from the Ontario Ministry of Training, Colleges and Universities. M.C.M. and J.D.’s participation was funded by NSF Grants DEB-0516041 and OPP-6767545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casper T. Christiansen.

Additional information

Author Contributions CTC and PG conceived the scientific objectives, and CTC analyzed the data and wrote the paper with contributions from all co-authors. PG established the experimental plots, and MCM and JD supplied the litter material. PG and CTC collected all field data, while CTC collected all lab data, except for fiber forage analysis (MCM).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christiansen, C.T., Mack, M.C., DeMarco, J. et al. Decomposition of Senesced Leaf Litter is Faster in Tall Compared to Low Birch Shrub Tundra. Ecosystems 21, 1564–1579 (2018). https://doi.org/10.1007/s10021-018-0240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0240-6

Keywords

Navigation