Skip to main content
Log in

Incorporation of Exotic Spartina alterniflora into Diet of Deposit-Feeding Snails in the Yangtze River Estuary Salt Marsh: Stable Isotope and Fatty Acid Analyses

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The response of deposit-feeding animals to plant invasions is still unclear, because their food sources are often difficult to identify. We examined the effect of the exotic plant species, Spartina alterniflora, on the food source composition of two dominant snail species, Assiminea latericea and Cerithidea largillierti, in the Yangtze River estuary salt marsh using a combination of stable isotope and fatty acid analyses. We collected the snails and their potential food materials (sediment organic matter, particulate organic matter, and plant material) in S. alterniflora and native plant Phragmites australis marshes and then determined the composition of food sources of snails based on fatty acid markers and stable isotope composition. Our results indicated that A. latericea and C. largillierti are deposit feeders grazing on sedimentary particles originating from diatoms, bacteria, and vascular plants. Invasive S. alterniflora did not result in a change in the relative contribution of microalgae, bacteria, and vascular plants to the food source of the snails. Spartina alterniflora was confirmed to be assimilated by both snail species. The higher assimilation of S. alterniflora by A. latericea compared with C. largillierti is probably related to the greater ability of A. latericea to assimilate plant materials from detritus, as evidenced by fatty acid composition. Overall, S. alterniflora can be incorporated into the food web of the estuarine salt marsh by the dominant snail species with generalist-feeding habits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alfaro AC. 2008. Diet of Littoraria scabra, while vertically migrating on mangrove trees: Gut content, fatty acid, and stable isotope analyses. Estuar Coast Shelf Sci 79:718–26.

    Article  Google Scholar 

  • Alfaro AC, Thomas F, Sergent L, Duxbury M. 2006. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuar Coast Shelf Sci 70:271–86.

    Article  Google Scholar 

  • Alvarez MF, Esquius KS, Addino M, Alberti J, Iribarne O, Botto F. 2013. Cascading top-down effects on estuarine intertidal meiofaunal and algal assemblages. J Exp Mar Biol Ecol 440:216–24.

    Article  Google Scholar 

  • Angradi TR, Hagan SM, Able KW. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: Phragmites vs. Spartina. Wetlands 21:75–92.

    Article  Google Scholar 

  • Belicka LL, Burkholder D, Fourqurean JW, Heithaus MR, Macko SA, Jaffé R. 2012. Stable isotope and fatty acid biomarkers of seagrass, epiphytic, and algal organic matter to consumers in a pristine seagrass ecosystem. Mar Freshw Res 63:1085–97.

    Article  CAS  Google Scholar 

  • Bristow LA, Jickells TD, Weston K, Marca-Bell A, Parker R, Andrews JE. 2013. Tracing estuarine organic matter sources into the southern North Sea using C and N isotopic signatures. Biogeochemistry 113:9–22.

    Article  CAS  Google Scholar 

  • Brusati ED, Grosholz ED. 2009. Does invasion of hybrid cordgrass change estuarine food webs? Biol Invasions 11:917–26.

    Article  Google Scholar 

  • Budge SM, Parrish CC. 1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org Geochem 29:1547–59.

    Article  CAS  Google Scholar 

  • Chen ZB, Guo L, Jin BS, Wu JH, Zheng GH. 2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River estuary, China. Estuar Coast Shelf Sci 82:265–72.

    Article  Google Scholar 

  • Clarke KR. 1993. Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–43.

    Article  Google Scholar 

  • Coelho H, da Silva TL, Reis A, Queiroga H, Serôdio J, Calado R. 2011. Fatty acid profiles indicate the habitat of mud snails Hydrobia ulvae within the same estuary: Mudflats vs. seagrass meadows. Estuar Coast Shelf Sci 92:181–7.

    Article  Google Scholar 

  • Couto T, Duarte B, Cacador I, Baeta A, Marques JC. 2013. Salt marsh plants carbon storage in a temperate Atlantic estuary illustrated by a stable isotopic analysis based approach. Ecol Ind 32:305–11.

    Article  CAS  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340.

    Article  PubMed  Google Scholar 

  • Dibble KL, Pooler PS, Meyerson LA. 2013. Impacts of plant invasions can be reversed through restoration: a regional meta-analysis of faunal communities. Biol Invasions 15:1725–37.

    Article  Google Scholar 

  • Folch J, Lees M, Stanley GHS. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509.

    CAS  PubMed  Google Scholar 

  • Galván K, Fleeger JW, Peterson B, Drake D, Deegan LA, Johnson DS. 2011. Natural abundance stable isotopes and dual isotope tracer additions help to resolve resources supporting a saltmarsh food web. J Exp Mar Biol Ecol 410:1–11.

    Article  Google Scholar 

  • Gratton C, Denno RF. 2005. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restor Ecol 13:358–72.

    Article  Google Scholar 

  • Gratton C, Denno RF. 2006. Arthropod food web restoration following removal of an invasive wetland plant. Ecol Appl 16:622–31.

    Article  PubMed  Google Scholar 

  • Grosholz E. 2002. Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–7.

    Article  Google Scholar 

  • Hammond LS. 1983. Nutrition of deposit-feeding holothuroids and echinoids (Echinodermata) from a shallow reef lagoon, Discovery Bay, Jamaica. Mar Ecol Prog Ser 10:297–305.

    Article  Google Scholar 

  • Han D, Yang D, Lee EJ, Park S. 2012. Food web structure in a Salix subfragilis dominated wetland in Hangang estuary using stable isotopes and fatty acid biomarkers. Anim Cells Syst 16:162–71.

    Article  CAS  Google Scholar 

  • Harvey HR. 1994. Fatty acids and sterols as source markers of organic matter in sediments of the North Carolina continental slope. Deep Sea Res II 41:783–96.

    Article  CAS  Google Scholar 

  • Heip CHR, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaert K. 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanogr Mar Biol Annu Rev 33:1–149.

    Google Scholar 

  • Hendricks LG, Mossop HE, Kicklighter CE. 2011. Palatability and chemical defense of Phragmites australis to the marsh periwinkle snail Littoraria irrorata. J Chem Ecol 37:838–45.

    Article  CAS  PubMed  Google Scholar 

  • Holomuzki JR, Klarer DM. 2010. Invasive reed effects on benthic community structure in Lake Erie coastal marshes. Wetl Ecol Manag 18:219–31.

    Article  Google Scholar 

  • Holzer KK, Rueda JL, McGlathery KJ. 2011. Differences in the feeding ecology of two seagrass-associated snails. Estuaries Coasts 34:1140–9.

    Article  Google Scholar 

  • Kon K, Hoshino Y, Kanou K, Okazaki D, Nakayama S, Kohno H. 2012. Importance of allochthonous material in benthic macrofaunal community functioning in estuarine salt marshes. Estuar Coast Shelf Sci 96:236–44.

    Article  CAS  Google Scholar 

  • Kurata K, Minami H, Kikuchi E. 2001. Stable isotope analysis of food sources for salt marsh snails. Mar Ecol Prog Ser 223:167–77.

    Article  Google Scholar 

  • Lebreton B, Richard P, Galois R, Radenac G, Pfléger C, Guillou G, Mornet F, Blanchard GF. 2011. Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: evidence from stable isotope and fatty acid analyses. Estuar Coast Shelf Sci 92:140–53.

    Article  CAS  Google Scholar 

  • Lau JA. 2013. Trophic consequences of a biological invasion: do plant invasions increase predator abundance? Oikos 122:474–80.

    Article  Google Scholar 

  • Levin LA, Neira C, Grosholz ED. 2006. Invasive cordgrass modifies wetland trophic function. Ecology 87:419–32.

    Article  PubMed  Google Scholar 

  • Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc B Biol Sci 270:775–81.

    Article  Google Scholar 

  • Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK. 2009. Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–20.

    Article  CAS  Google Scholar 

  • Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B. 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze estuary, China. Ecosystems 10:1351–61.

    Article  CAS  Google Scholar 

  • Ma ZJ, Wang Y, Gan XJ, Li B, Cai YT, Chen JK. 2009. Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River estuary, China. Environ Manag 43:1187–200.

    Article  Google Scholar 

  • McMeans BC, Rooney N, Arts MT, Fisk AT. 2013. Food web structure of a coastal Arctic marine ecosystem and implications for stability. Mar Ecol Prog Ser 482:17–28.

    Article  CAS  Google Scholar 

  • Posey MH, Alphin TD, Meyer DL, Johnson JM. 2003. Benthic communities of common reed Phragmites australis and marsh cordgrass Spartina alterniflora marshes in Chesapeake Bay. Mar Ecol Prog Ser 261:51–61.

    Article  Google Scholar 

  • Qin HM, Chu TJ, Xu W, Lei GC, Chen ZB, Quan WM, Chen JK, Wu JH. 2010. Effects of invasive cordgrass on crab distributions and diets in a Chinese salt marsh. Mar Ecol Prog Ser 415:177–87.

    Article  Google Scholar 

  • Quan WM, Fu CZ, Jin BS, Luo YQ, Li B, Chen JK, Wu JH. 2007. Tidal marshes as energy sources for commercially important nektonic organisms: stable isotope analysis. Mar Ecol Prog Ser 352:89–99.

    Article  Google Scholar 

  • Quan WM, Huang DQ, Chu TJ, Sheng Q, Fu CZ, Chen JK, Wu JH. 2009. Trophic relationships in the Changjiang River estuarine salt marshes: preliminary investigation from δ 13C and δ 15N analysis. Acta Oceanol Sin 28:50–8.

    Google Scholar 

  • Ramos CS, Parrish CC, Quibuyen TAO, Abrajano TA. 2003. Molecular and carbon isotopic variations in lipids in rapidly settling particles during a spring phytoplankton bloom. Org Geochem 34:195–207.

    Article  CAS  Google Scholar 

  • Silliman BR, Bertness MD. 2002. A trophic cascade regulates salt marsh primary production. Proc Natl Acad Sci USA 99:10500–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uthicke S. 1999. Sediment bioturbation and impact of feeding activity of Holothuria (Halodeima) atra and Stichopus chloronotus, two sediment feeding holothurians, at Lizard Island, Great Barrier Reef. Bull Mar Sci 64:129–41.

    Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F. 1998. Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–79.

    Article  CAS  Google Scholar 

  • Wainright SC, Weinstein MP, Able KW, Currin CA. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass Spartina alterniflora and the common reed Phragmites australis to brackish-marsh food webs. Mar Ecol Prog Ser 200:77–91.

    Article  CAS  Google Scholar 

  • Weis JS, Weis P. 2003. Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster? Mar Pollut Bull 46:816–20.

    Article  CAS  PubMed  Google Scholar 

  • Whitcraft CR, Levin LA, Talley D, Crooks JA. 2008. Utilization of invasive tamarisk by salt marsh consumers. Oecologia 158:259–72.

    Article  PubMed  Google Scholar 

  • Wu YT, Wang CH, Zhang XD, Zhao B, Jiang LF, Chen JK, Li B. 2009. Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets. Biol Invasions 11:635–49.

    Article  Google Scholar 

  • Yuhas CE, Hartman J, Weis J. 2005. Benthic communities in Spartina alterniflora-and Phragmites australis-dominated salt marshes in the Hackensack Meadowlands, New Jersey. Urban Habitats 3:158–91.

    Google Scholar 

  • Zuo P, Zhao SH, Liu CA, Wang CH, Liang YB. 2012. Distribution of Spartina spp. along China’s coast. Ecol Eng 40:160–6.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Science and Technology Ministry (2013CB430404), NSFC fund (30930019, 41371258) and Science and Technology Department of Shanghai (12231204700, 13231203503). We thank Qiang Sheng and Mingyao Huang for their help in field samplings, and Pei Zhang and Jiahui Zhou for their help in fatty acid analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Wu.

Additional information

Author Contributions

Jihua Wu and Sikai Wang designed the study. Sikai Wang, Tianjiang Chu, and Danqing Huang performed the research. Sikai Wang, Jihua Wu and Bo Li wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Chu, T., Huang, D. et al. Incorporation of Exotic Spartina alterniflora into Diet of Deposit-Feeding Snails in the Yangtze River Estuary Salt Marsh: Stable Isotope and Fatty Acid Analyses. Ecosystems 17, 567–577 (2014). https://doi.org/10.1007/s10021-013-9743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9743-3

Keywords

Navigation