Skip to main content
Log in

Effects of Water Table Drawdown on Root Production and Aboveground Biomass in a Boreal Bog

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

We studied the effect of long-term water table drawdown on the vascular plant community in an ombrotrophic bog in central Finland by measuring aboveground biomass and belowground production (by in-growth cores) across plant functional groups including herbs, shrubs, and trees. We compared drained and undrained portions 45 years after the installation of a drainage ditch network, which has lowered water levels of 15–20 cm on average in the drained part of the site. Although shrub fine root production did not differ significantly between sites, water table drawdown increased belowground tree fine root production by 740% (3.8 ± 5.4 SD and 28.1 ± 24.1 g m−2 y−1 in undrained and drained sites, respectively) at the expense of herb root production, which declined 38% (27.62 ± 16.40 and 10.58 ± 15.7 g m−2 y−1 in undrained and drained sites, respectively) yielding no significant overall change in total fine root production. Drainage effects on aboveground biomass showed a similar pattern among plant types, as aboveground tree biomass increased dramatically with drainage (79 ± 135 and 2546 ± 1551 g m−2 in drained and undrained sites, respectively). Although total shrub biomass was not significantly different between sites, shrubs allocated more biomass to stems than leaves in the drained site. Drainage also caused a significant shift in shrub species composition. Although trees dominated the aboveground biomass following water table drawdown, understorey vegetation, mainly shrubs, continued to dominate belowground fine root production, comprising 64% of total root production at the drained site. Aboveground biomass proved to be a good predictor of belowground production, suggesting that allometric relationships can be developed to estimate belowground production in these systems. Increase in tree root production can counteract decrease in herb fine root production following water table drawdown, emphasizing the importance of plant functional type responses to water table drawdown. Whether these changes will offset ecosystem C loss via increased plant C storage or stimulate soil organic matter decomposition via increased above- and belowground litter inputs requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aerts R, Berendse F, Klerk NM, Bakker C. 1989. Root production and root turnover in 2 dominant species of wet heathlands. Oecologia 81:374–8.

    Google Scholar 

  • Aerts R, Boot RGA, Vanderaart PJM. 1991. The relation between aboveground and belowground biomass allocation patterns and competitive ability. Oecologia 87:551–9.

    Article  Google Scholar 

  • Aerts R, van Logtestijn RSP, Karlsson PS. 2006. Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species. Oecologia 146:652–8.

    Article  CAS  PubMed  Google Scholar 

  • Alm J, Shurpali NJ, Minkkinen K, Aro L, Hytonen J, Laurila T, Lohila A, Maljanen M, Martikainen PJ, Makiranta P, Penttila T, Saarnio S, Silvan N, Tuittila ES, Laine J. 2007. Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Environ Res 12:191–209.

    CAS  Google Scholar 

  • Anttila J. 2008. Lyhyt- ja pitkäaikaisen kuivatuksen aiheuttamat muutokset soiden maanpäällisen karikkeen tuotossa. MSc thesis, Department of Forest Ecology, University of Helsinki. 56 p.

  • Backéus I. 1990. Production and depth distribution of fine roots in a boreal open bog. Ann Bot Fenn 27:261–5.

    Google Scholar 

  • Bakelaar RG, Odum EP. 1978. Community and population level responses to fertilization in an old-field ecosystem. Ecology 59:660–5.

    Article  Google Scholar 

  • Berg G, Smalla K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Brække FH. 1992. Root biomass changes after drainage and fertilization of a low-shrub pine bog. Plant Soil 143:33–43.

    Article  Google Scholar 

  • Bremer C, Braker G, Matthies D, Reuter A, Engels C, Conrad R. 2007. Impact of plant functional group, plant species, and sampling time on the composition of nirK-Type denitrifier communities in soil. Appl Environ Microbiol 73:6876–84.

    Article  CAS  PubMed  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA. 1997. Root biomass allocation in the world’s upland forests. Oecologia 111:1–11.

    Article  Google Scholar 

  • Crow SE, Wieder RK. 2005. Sources of CO2 emission from a northern peatland: root respiration, exudation, and decomposition. Ecology 86:1825–34.

    Article  Google Scholar 

  • Dijkstra FA, Cheng WX, Johnson DW. 2006. Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biol Biochem 38:1526–2519.

    Google Scholar 

  • Domisch T, Finér L, Laiho R, Karsisto M, Laine J. 2000. Decomposition of Scots pine litter and the fate of released carbon in pristine and drained pine mires. Soil Biol Biochem 32:1571–80.

    Article  CAS  Google Scholar 

  • Finér L, Messier C, DeGrandpre L. 1997. Fine-root dynamics in mixed boreal conifer-broad-leafed forest stands at different successional stages after fire. Can J For Res 27:304–14.

    Google Scholar 

  • Finér L, Laine J. 1998. Root dynamics at drained peatland sites of different fertility in southern Finland. Plant Soil 201:27–36.

    Article  Google Scholar 

  • Finér L, Laine J. 2000. The ingrowth bag method in measuring root production on peatland sites. Scand J For Res 15:75–80.

    Article  Google Scholar 

  • Freeman C, Lock MA, Reynolds B. 1993. Climatic-change and the release of immobilized nutrients from Welsh riparian wetland soils. Ecol Eng 2:367–73.

    Article  Google Scholar 

  • Gale MR, Grigal DK. 1987. Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17:829–34.

    Article  Google Scholar 

  • Gerdol R, Anfodillo T, Gualmini M, Cannone N, Bragazza L, Brancaleoni L. 2004. Biomass distribution of two subalpine dwarf-shrubs in relation to soil moisture and nutrient content. J Veg Sci 15:457–64.

    Article  Google Scholar 

  • Gill RA, Jackson RB. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31.

    Article  Google Scholar 

  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–95.

    Article  Google Scholar 

  • Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C. 2001. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–411.

    Article  Google Scholar 

  • Grootjans AP, Hunneman H, Verkiel H, Van Andel J. 2005. Long-term effects of drainage on species richness of a fen meadow at different spatial scales. Basic Appl Ecol 6:185–93.

    Article  Google Scholar 

  • Håland B, Brække FH. 1989. Distribution of root biomass in a low-shrub pine bog. Scand J For Res 4:307–16.

    Article  Google Scholar 

  • Hester AJ, Miles J, Gimingham CH. 1991. Succession from heath moorland to birch woodland. I. Experimental alteration of specific conditions in the field. J Ecol 79:303–15.

    Article  Google Scholar 

  • Hökkä H, Repola J, Laine J. 2008. Quantifying the interrelationship between tree stand growth rate and water table level in drained peatland sites within Central Finland. Can J For Res 38:1775–83.

    Article  Google Scholar 

  • Hotanen JP, Maltamo M, Reinikainen A. 2006. Canopy stratification in peatland forests in Finland. Silva Fenn 40:53–82.

    Google Scholar 

  • Huttunen JT, Nykanen H, Martikainen PJ, Nieminen M. 2003. Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland. Plant Soil 255:457–62.

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change 2007: synthesis report. New York: Cambridge University Press.

    Google Scholar 

  • Jaatinen K, Fritze H, Laine J, Laiho R. 2007. Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Glob Change Biol 13:491–510.

    Article  Google Scholar 

  • Jaatinen K, Laiho R, Vuorenmaa A, del Castillo U, Minkkinen K, Pennanen T, Penttilä T, Fritze H. 2008. Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Environ Microbiol 10:339–53.

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411.

    Article  Google Scholar 

  • Joosten H. 2004. The IMCG global peatland database. www.imcg.net/gpd/gpd.htm.

  • Laiho R, Finér L. 1996. Changes in root biomass after water-level drawdown on pine mires in southern Finland. Scand J For Res 11:251–60.

    Article  Google Scholar 

  • Laiho R, Laine J. 1996. Plant biomass carbon store after water-level drawdown of pine mires. In: Laiho R, Laine J, Vasander H, Eds. Proceedings of the international workshop on northern peatlands in global climatic change, 8–12 Oct 1995, Hyytiälä, Finland. Publ. Acad. Finl. No. 1/96. pp 54–7.

  • Laiho R, Laine J. 1997. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. For Ecol Manag 93:161–9.

    Article  Google Scholar 

  • Laiho R, Sallantaus T, Laine J. 1999. The effect of forestry drainage on vertical distributions of major plant nutrients in peat soils. Plant Soil 207:169–81.

    Article  Google Scholar 

  • Laiho R, Vasander H, Penttilä T, Laine J. 2003. Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Glob Biogeochem Cycles 17:1–11.

    Article  CAS  Google Scholar 

  • Laiho R, Laine J, Trettin CC, Finér L. 2004. Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests, and the effects of inter-annual weather variation. Soil Biol Biochem 36:1095–109.

    Article  CAS  Google Scholar 

  • Laiho R. 2006. Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–24.

    Article  CAS  Google Scholar 

  • Laine J, Vasander H, Laiho R. 1995. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802.

    Article  Google Scholar 

  • Laine J, Komulainen V, Laiho R, Minkkinen K, Rasinmäki A, Sallantaus T, Sarkkola S, Silvan N, Tolonen K, Tuittila E, Vasander H, Päivänen J. 2004. Lakkasuo—a guide to mire ecosystem. Helsinki: Department of Forest Ecology Publications, University of Helsinki.

    Google Scholar 

  • Litton CM, Ryan MG, Tinker DB, Knight DH. 2003. Belowground and aboveground biomass in young postfire lodgepole pine forest of contrasting tree density. Can J For Res 33:351–63.

    Article  Google Scholar 

  • Loya WM, Johnson LC, Nadelhoffer KJ. 2004. Seasonal dynamics of leaf- and root derived C in arctic tundra mesocosms. Soil Biol Biochem 36:655–66.

    Article  CAS  Google Scholar 

  • Luken JO, Billings WD, Peterson KM. 1985. Succession and biomass allocation as controlled by Sphagnum in an Alaskan peatland. Can J Bot 63:1500–7.

    Google Scholar 

  • Mäkipää R. 1999. Response patterns of Vaccinium myrtillus and V. vitis-idaea along nutrient gradients in boreal forest. J Veg Sci 10:17–26.

    Article  Google Scholar 

  • Mälson K, Backéus I, Rydin H. 2008. Long-term effects of drainage and initial effects of hydrological restoration on rich fen vegetation. Appl Veg Sci 11:99–106.

    Article  Google Scholar 

  • Martin DW, Chambers JC. 2001. Restoring degraded riparian meadows: biomass and species responses. J Range Manag 54:284–91.

    Article  Google Scholar 

  • Minkkinen K, Laine J. 1998. Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can J For Res 28:1267–75.

    Article  Google Scholar 

  • Minkkinen K, Vasander H, Jauhiainen S, Karsisto M, Laine J. 1999. Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland. Plant Soil 207:107–20.

    Article  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root:shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96.

    Article  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT. 2002. Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36.

    Article  Google Scholar 

  • Persson H. 1983. The distribution and productivity of fine roots in boreal forests. Plant Soil 71:87–101.

    Article  Google Scholar 

  • Rydin H, Jeglum JK. 2006. The biology of peatlands. Uppsala: Oxford University Press. p 360.

    Google Scholar 

  • Sarkkola S, Hökkä H, Penttilä T. 2004. Natural development of stand structure in peatland Scots pine following drainage: results based on long-term monitoring of permanent sample plots. Silva Fenn 38:405–12.

    Google Scholar 

  • Shaver GR, Chapin FS. 1991. Production: biomass relationships and elemental cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–31.

    Article  Google Scholar 

  • Silvan N, Laiho R, Vasander H. 2000. Changes in mesofauna abundance in peat soils drained for forestry. For Ecol Manag 133:127–33.

    Article  Google Scholar 

  • Silver WL, Miya RK. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–19.

    Google Scholar 

  • Silvola J, Alm J, Ahlholm U, Nykänen H, Martikainen PJ. 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. J Ecol 84:219–28.

    Article  Google Scholar 

  • Sjörs H. 1991. Phyto- and necromass above and below ground in a fen. Holarctic Ecol 14:208–18.

    Google Scholar 

  • SPSS, Inc. 2000. SYSTAT Version 10. Chicago: SPSS Inc.

  • Strom L, Mastepanov M, Christensen TR. 2005. Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75:65–82.

    Article  CAS  Google Scholar 

  • Turetsky MR. 2003. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409.

    Article  Google Scholar 

  • Väisänen E, Kellomäki S, Hari P. 1977. Annual growth level of some plant species as a function of light available for photosynthesis. Silva Fenn 11:269–75.

    Google Scholar 

  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM. 2008. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). Am J Bot 95:1506–14.

    Article  Google Scholar 

  • Vanninen P, Mäkelä A. 1999. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–30.

    PubMed  Google Scholar 

  • Vasander H. 1982. Plant biomass and production in virgin, drained and fertilized sites in a raised bog in Southern Finland. Ann Bot Fenn 19:103–25.

    Google Scholar 

  • Vasander H. 1984. Effect of forest amelioration on diversity in an ombrotrophic bog. Ann Bot Fenn 21:7–15.

    Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J. 1998. Analysis of some direct and indirect methods for estimating root biomass and production for forests at an ecosystem level. Plant Soil 200:71–89.

    Article  CAS  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, OHara J, Asbjornsen H. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219.

    Article  CAS  Google Scholar 

  • Wállen B. 1986. Above and below ground dry mass of the 3 main vascular plants on hummocks on a sub-arctic peat bog. Oikos 46:51–6.

    Article  Google Scholar 

  • Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT. 2000. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–78.

    Article  Google Scholar 

  • Weltzin JF, Bridgham SD, Pastor J, Chen JQ, Harth C. 2003. Potential effects of warming and drying on peatland plant community composition. Glob Change Biol 9:141–51.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Lilian Ames, Jacob Pluto, and Nicole Sanderson for their help sorting roots in the laboratory, as well as Jani Anttila, Candice Bohonis-Seyersen, Timo Penttilä, and Petra Vávřová for help in the field. We gratefully acknowledge the comments of two anonymous reviewers and the Associate Editor, which have improved the manuscript. Special thanks to the Natural Sciences and Engineering Research Council of Canada, Le Fonds Québécois de la Recherche sur la Nature et les Technologies, and the Academy of Finland (124573) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meaghan Murphy.

Additional information

Author Contributions

M. Murphy contributed to study design and methodology, performed research, analyzed data, and wrote the article. R. Laiho contributed to the study design, performed research, contributed to manuscript writing. T. R. Moore contributed to manuscript writing and data analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, M., Laiho, R. & Moore, T.R. Effects of Water Table Drawdown on Root Production and Aboveground Biomass in a Boreal Bog. Ecosystems 12, 1268–1282 (2009). https://doi.org/10.1007/s10021-009-9283-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-009-9283-z

Keywords

Navigation