Skip to main content

Advertisement

Log in

Adhesion molecules and the extracellular matrix as drug targets for glioma

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

The formation of tumor vasculature and cell invasion along white matter tracts have pivotal roles in the development and progression of glioma. A better understanding of the mechanisms of angiogenesis and invasion in glioma will aid the development of novel therapeutic strategies. The processes of angiogenesis and invasion cause the production of an array of adhesion molecules and extracellular matrix (ECM) components. This review focuses on the role of adhesion molecules and the ECM in malignant glioma. The results of clinical trials using drugs targeted against adhesion molecules and the ECM for glioma are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Penas-Prado M, Gilbert MR (2007) Molecularly targeted therapies for malignant gliomas: advances and challenges. Expert Rev Anticancer Ther 7:641–661

    Article  PubMed  Google Scholar 

  2. Bello L, Giussani C, Carrabba G, Pluderi M, Costa F, Bikfalvi A (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284

    Article  CAS  PubMed  Google Scholar 

  3. Onishi M, Kurozumi K, Ichikawa T, Date I (2013) Mechanisms of tumor development and anti-angiogenic therapy in glioblastoma multiforme. Neurol Med Chir (Tokyo) 53:755–763

    Article  Google Scholar 

  4. Kurozumi K, Onishi M, Ichikawa T et al (2013) III. Molecular targeting therapy for glioma-bevacizumab and cilengitide. Gan To Kagaku Ryoho 40:718–722

    PubMed  Google Scholar 

  5. Varner JA, Cheresh DA (1996) Integrins and cancer. Curr Opin Cell Biol 8:724–730

    Article  CAS  PubMed  Google Scholar 

  6. Varner JA, Cheresh DA (1996) Tumor angiogenesis and the role of vascular cell integrin alphavbeta3. Important Adv Oncol 69–87

  7. Wong ML, Prawira A, Kaye AH, Hovens CM (2009) Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 16:1119–1130

    Article  CAS  PubMed  Google Scholar 

  8. Onishi M, Ichikawa T, Kurozumi K, Date I (2011) Angiogenesis and invasion in glioma. Brain Tumor Pathol 28:13–24

    Article  CAS  PubMed  Google Scholar 

  9. Onishi M, Ichikawa T, Kurozumi K et al (2015) Annexin A2 regulates angiogenesis and invasion phenotypes of malignant glioma. Brain Tumor Pathol 32:184–194

    Article  CAS  PubMed  Google Scholar 

  10. Rooprai HK, McCormick D (1997) Proteases and their inhibitors in human brain tumours: a review. Anticancer Res 17:4151–4162

    CAS  PubMed  Google Scholar 

  11. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634

    Article  CAS  PubMed  Google Scholar 

  12. Nakada M, Nakada S, Demuth T, Tran N, Hoelzinger D, Berens M (2007) Molecular targets of glioma invasion. Cell Mol Life Sci 64:458–478

    Article  CAS  PubMed  Google Scholar 

  13. Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    Article  CAS  PubMed  Google Scholar 

  14. Huang Z-Y, Wu Y, Hedrick N, Gutmann DH (2003) T-cadherin-mediated cell growth regulation involves G2 phase arrest and requires p21CIP1/WAF1 expression. Mol Cell Biol 23:566–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Osborn L, Hession C, Tizard R et al (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203–1211

    Article  CAS  PubMed  Google Scholar 

  16. Couldwell WT, de Tribolet N, Antel JP, Gauthier T, Kuppner MC (1992) Adhesion molecules and malignant gliomas: implications for tumorigenesis. J Neurosurg 76:782–791

    Article  CAS  PubMed  Google Scholar 

  17. Springer TA, Dustin ML, Kishimoto TK, Marlin SD (1987) The lymphocyte function associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol 5:223–252

    Article  CAS  PubMed  Google Scholar 

  18. Stoolman LM (1989) Adhesion molecules controlling lymphocyte migration. Cell 56:907–910

    Article  CAS  PubMed  Google Scholar 

  19. Sasaki H, Yoshida K, Ikeda E et al (1998) Expression of the neural cell adhesion molecule in astrocytic tumors. Cancer 82:1921–1931

    Article  CAS  PubMed  Google Scholar 

  20. Owens GC, Orr EA, DeMasters BKK, Muschel RJ, Berens ME, Kruse CA (1998) Overexpression of a transmembrane isoform of neural cell adhesion molecule alters the invasiveness of rat CNS-1 glioma. Cancer Res 58:2020–2028

    CAS  PubMed  Google Scholar 

  21. Prag S, Lepekhin EA, Kolkova K et al (2002) NCAM regulates cell motility. J Cell Sci 115:283–292

    CAS  PubMed  Google Scholar 

  22. Edvardsen K, Chen W, Rucklidge G, Walsh FS, Obrink B, Bock E (1993) Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases. Proc Natl Acad Sci 90:11463–11467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woodfin A, Voisin M-B, Nourshargh S (2007) PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 27:2514–2523

    Article  CAS  PubMed  Google Scholar 

  24. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8:215

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  PubMed  Google Scholar 

  26. Bello L, Francolini M, Marthyn P et al (2001) Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 49:380–389 (discussion 390)

    CAS  PubMed  Google Scholar 

  27. Schnell O, Krebs B, Wagner E et al (2008) Expression of integrin alphavbeta3 in gliomas correlates with tumor grade and is not restricted to tumor vasculature. Brain Pathol 18:378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  CAS  PubMed  Google Scholar 

  29. Kim S, Bell K, Mousa SA, Varner JA (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kurozumi K, Ichikawa T, Onishi M, Fujii K, Date I (2012) Cilengitide treatment for malignant glioma: current status and future direction. Neurol Med Chir (Tokyo) 52:539–547

    Article  Google Scholar 

  31. Novak U, Kaye AH (2000) Extracellular matrix and the brain: components and function. J Clin Neurosci 7:280–290

    Article  CAS  PubMed  Google Scholar 

  32. Timpl R, Brown JC (1994) The laminins. Matrix biology 14:275–281

    Article  CAS  PubMed  Google Scholar 

  33. Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863

    Article  CAS  PubMed  Google Scholar 

  34. Uhm JH, Gladson CL, Rao JS (1999) The role of integrins in the malignant phenotype of gliomas. Front Biosci 4:188–199

    Article  Google Scholar 

  35. Sweeney SM, Orgel JP, Fertala A et al (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283:21187–21197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353

    Article  CAS  PubMed  Google Scholar 

  37. Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27:265–290

    Article  CAS  PubMed  Google Scholar 

  38. Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogawa K, Oguchi M, Nakashima Y, Yamabe H (1989) Distribution of collagen type IV in brain tumors: an immunohistochemical study. J Neurooncol 7:357–366

    Article  CAS  PubMed  Google Scholar 

  40. Senner V, Ratzinger S, Mertsch S, Grässel S, Paulus W (2008) Collagen XVI expression is upregulated in glioblastomas and promotes tumor cell adhesion. FEBS Lett 582:3293–3300

    Article  CAS  PubMed  Google Scholar 

  41. Bauer R, Ratzinger S, Wales L et al (2011) Inhibition of collagen XVI expression reduces glioma cell invasiveness. Cell Physiol Biochem 27:217–226

    Article  CAS  PubMed  Google Scholar 

  42. Rutka JT, Apodaca G, Stern R, Rosenblum M (1988) The extracellular matrix of the central and peripheral nervous systems: structure and function. J Neurosurg 69:155–170

    Article  CAS  PubMed  Google Scholar 

  43. Giese A, Rief MD, Loo MA, Berens ME (1994) Determinants of human astrocytoma migration. Cancer Res 54:3897–3904

    CAS  PubMed  Google Scholar 

  44. Deryugina EI, Bourdon MA (1996) Tenascin mediates human glioma cell migration and modulates cell migration on fibronectin. J Cell Sci 109:643–652

    CAS  PubMed  Google Scholar 

  45. Zagzag D, Friedlander DR, Dosik J et al (1996) Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res 56:182–189

    CAS  PubMed  Google Scholar 

  46. Zagzag D, Shiff B, Jallo GI et al (2002) Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res 62:2660–2668

    CAS  PubMed  Google Scholar 

  47. Mahesparan R, Read T-A, Lund-Johansen M, Skaftnesmo K, Bjerkvig R, Engebraaten O (2003) Expression of extracellular matrix components in a highly infiltrative in vivo glioma model. Acta Neuropathol 105:49–57

    CAS  PubMed  Google Scholar 

  48. Gatson NN, Chiocca EA, Kaur B (2012) Anti-angiogenic gene therapy in the treatment of malignant gliomas. Neurosci Lett 527:62–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nishimori H, Shiratsuchi T, Urano T et al (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150

    Article  CAS  PubMed  Google Scholar 

  50. Nakada M, Nakamura H, Ikeda E et al (1999) Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am J Pathol 154:417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Duda D, Sunamura M, Lozonschi L et al (2002) Overexpression of the p53-inducible brain-specific angiogenesis inhibitor 1 suppresses efficiently tumour angiogenesis. Br J Cancer 86:490–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kudo S, Konda R, Obara W et al (2007) Inhibition of tumor growth through suppression of angiogenesis by brain-specific angiogenesis inhibitor 1 gene transfer in murine renal cell carcinoma. Oncol Rep 18:785–791

    CAS  PubMed  Google Scholar 

  53. Kaur B, Brat DJ, Devi NS, Van Meir EG (2005) Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24:3632–3642

    Article  CAS  PubMed  Google Scholar 

  54. Kaur B, Cork SM, Sandberg EM et al (2009) Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res 69:1212–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hardcastle J, Kurozumi K, Dmitrieva N et al (2010) Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1. Mol Ther 18:285–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yoo JY, Haseley A, Bratasz A et al (2012) Antitumor efficacy of 34.5 ENVE: a transcriptionally retargeted and “Vstat120”-expressing oncolytic virus. Mol Ther 20:287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kurozumi K, Hardcastle J, Thakur R et al (2008) Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther 16:1382–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurozumi K, Hardcastle J, Thakur R et al (2007) Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst 99:1768–1781

    Article  CAS  PubMed  Google Scholar 

  59. Fujii K, Kurozumi K, Ichikawa T et al (2013) The integrin inhibitor cilengitide enhances the anti-glioma efficacy of vasculostatin-expressing oncolytic virus. Cancer Gene Ther 20:437–444

    Article  CAS  PubMed  Google Scholar 

  60. Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810

    Article  CAS  PubMed  Google Scholar 

  61. Li J, Ye L, Owen S, Weeks HP, Zhang Z, Jiang WG (2015) Emerging role of CCN family proteins in tumorigenesis and cancer metastasis (Review). Int J Mol Med 36:1451–1463

    PubMed  PubMed Central  Google Scholar 

  62. Ishida J, Kurozumi K, Ichikawa T et al (2015) Evaluation of extracellular matrix protein CCN1 as a prognostic factor for glioblastoma. Brain Tumor Pathol 32:245–252

    Article  CAS  PubMed  Google Scholar 

  63. Haseley A, Boone S, Wojton J et al (2012) Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma. Cancer Res 72:1353–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kireeva ML, Lam SC, Lau LF (1998) Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem 273:3090–3096

    Article  CAS  PubMed  Google Scholar 

  65. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

    Article  CAS  PubMed  Google Scholar 

  66. Wu YJ, La Pierre DP, Jin W, Albert JY, Burton BY (2005) The interaction of versican with its binding partners. Cell research 15:483–494

    Article  CAS  PubMed  Google Scholar 

  67. Silver DJ, Siebzehnrubl FA, Schildts MJ et al (2013) Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment. J Neurosci 33:15603–15617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu F, a Dzaye OD, Hahn A et al (2015) Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro Oncol 17:200–210

    Article  PubMed  PubMed Central  Google Scholar 

  69. Heckmann D, Kessler H (2007) Design and chemical synthesis of integrin ligands. Methods Enzymol 426:463–503

    Article  CAS  PubMed  Google Scholar 

  70. Meyer A, Auernheimer J, Modlinger A, Kessler H (2006) Targeting RGD recognizing integrins: drug development, biomaterial research, tumor imaging and targeting. Curr Pharm Des 12:2723–2747

    Article  CAS  PubMed  Google Scholar 

  71. Tabatabai G, Weller M, Nabors B et al (2010) Targeting integrins in malignant glioma. Target Oncol 5:175–181

    Article  PubMed  Google Scholar 

  72. Leavesley DI, Ferguson GD, Wayner EA, Cheresh DA (1992) Requirement of the integrin beta 3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Biol 117:1101–1107

    Article  CAS  PubMed  Google Scholar 

  73. MacDonald TJ, Stewart CF, Kocak M et al (2008) Phase I clinical trial of cilengitide in children with refractory brain tumors: pediatric Brain Tumor Consortium Study PBTC-012. J Clin Oncol 26:919–924

    Article  CAS  PubMed  Google Scholar 

  74. MacDonald TJ, Taga T, Shimada H et al (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48:151–157

    CAS  PubMed  Google Scholar 

  75. Onishi M, Kurozumi K, Ichikawa T et al (2013) Gene expression profiling of the anti-glioma effect of Cilengitide. Springerplus 2:160

    Article  PubMed  PubMed Central  Google Scholar 

  76. Brooks PC, Montgomery AM, Rosenfeld M et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    Article  CAS  PubMed  Google Scholar 

  77. Onishi M, Ichikawa T, Kurozumi K et al (2013) Bimodal anti-glioma mechanisms of cilengitide demonstrated by novel invasive glioma models. Neuropathology 33:162–174

    Article  CAS  PubMed  Google Scholar 

  78. Tate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6:447–457

    Article  CAS  PubMed  Google Scholar 

  79. Ishida J, Onishi M, Kurozumi K et al (2014) Integrin inhibitor suppresses bevacizumab-induced glioma invasion. Transl Oncol 7(292–302):e291

    Google Scholar 

  80. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62:4263–4272

    CAS  PubMed  Google Scholar 

  81. Abdollahi A, Griggs DW, Zieher H et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11:6270–6279

    Article  CAS  PubMed  Google Scholar 

  82. Tentori L, Dorio AS, Muzi A et al (2008) The integrin antagonist cilengitide increases the antitumor activity of temozolomide against malignant melanoma. Oncol Rep 19:1039–1043

    CAS  PubMed  Google Scholar 

  83. Reardon DA, Fink KL, Mikkelsen T et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol 26:5610–5617

    Article  CAS  PubMed  Google Scholar 

  84. Mikkelsen T, Brodie C, Finniss S et al (2009) Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int J Cancer 124:2719–2727

    Article  CAS  PubMed  Google Scholar 

  85. Shimazu Y, Kurozumi K, Ichikawa T et al (2015) Integrin antagonist augments the therapeutic effect of adenovirus-mediated REIC/Dkk-3 gene therapy for malignant glioma. Gene Ther 22:146–154

    Article  CAS  PubMed  Google Scholar 

  86. Eskens FA, Dumez H, Hoekstra R et al (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 39:917–926

    Article  CAS  PubMed  Google Scholar 

  87. Stupp R, Van Den Bent M, Erridge S, et al. (2010) Cilengitide in newly diagnosed glioblastoma with MGMT promoter methylation: protocol of a multicenter, randomized, open-label, controlled phase III trial (CENTRIC). ASCO Annual Meeting Proceedings. p TPS152

  88. Nabors LB, Fink KL, Mikkelsen T et al (2015) Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study. Neuro Oncol 17:708–717

    Article  PubMed  Google Scholar 

  89. Weller M, Nabors L, Gorlia T et al (2016) Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome. Oncotarget. [Epub ahead of print]

  90. Mason WP (2015) End of the road: confounding results of the CORE trial terminate the arduous journey of cilengitide for glioblastoma. Neuro Oncol 17:634–635

    Article  PubMed  Google Scholar 

  91. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci 91:4082–4085

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hansen JM, Harris C (2004) A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-κB pathway. Antioxid Redox Signal 6:1–14

    Article  CAS  PubMed  Google Scholar 

  93. Fine HA, Figg WD, Jaeckle K et al. (2000) Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 18:708–715

    CAS  PubMed  Google Scholar 

  94. Giglio P, Dhamne M, Hess KR et al (2012) Phase 2 trial of irinotecan and thalidomide in adults with recurrent anaplastic glioma. Cancer 118:3599–3606

    Article  CAS  PubMed  Google Scholar 

  95. Bigner DD, Brown M, Coleman RE et al (1995) Phase I studies of treatment of malignant gliomas and neoplastic meningitis with131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab′) 2-a preliminary report. J Neurooncol 24:109–122

    Article  CAS  PubMed  Google Scholar 

  96. Reardon DA, Akabani G, Coleman RE et al (2002) Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20:1389–1397

    Article  CAS  PubMed  Google Scholar 

  97. Reulen H-J, Poepperl G, Goetz C et al (2015) Long-term outcome of patients with WHO Grade III and IV gliomas treated by fractionated intracavitary radioimmunotherapy. J Neurosurg 123:760–770

    Article  PubMed  Google Scholar 

  98. ClinicalTrials.gov: registry and results database of federally and privately supported clinical trials. http://clinicaltrials.gov/ct2/home. Accessed 24 Feb 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kurozumi.

Ethics declarations

Conflict of interest

None of the authors have conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, T., Kurozumi, K., Ishida, J. et al. Adhesion molecules and the extracellular matrix as drug targets for glioma. Brain Tumor Pathol 33, 97–106 (2016). https://doi.org/10.1007/s10014-016-0261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-016-0261-9

Keywords

Navigation