Skip to main content
Log in

Optimized stator design method using machine parameter permutation

Optimiertes Statorauslegungsverfahren unter Verwendung von Maschinenparameter-Permutation

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

In this paper, a new optimized method for the stator design of permanent magnet synchronous machines (PSM) using parameter permutation is introduced. The proposed joint optimization of the groove form and winding design dissolves the fixed sequential steps of the conventional stator design process. This enables a holistic consideration of all possible combinations of machine parameters and aims to find the global optimum for the stator design.

Zusammenfassung

In dieser Arbeit wird ein neues optimiertes Verfahren für die Statorauslegung von permanenterregten Synchronmaschinen (PSM) unter Verwendung von Parameter Permutation vorgestellt. Die gleichzeitige Optimierung der Nutform und des Wicklungsdesigns löst die festen aufeinanderfolgenden Schritte des konventionellen Statorauslegungsprozesses auf. Dies ermöglicht eine ganzheitliche Betrachtung aller möglichen Kombinationen von Maschinenparametern und zielt darauf ab, das globale Optimum für die Statorauslegung zu finden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Müller G, Vogt K, Ponick B (2011) Berechnung elektrischer Maschinen, 6th edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Binder A (2012) Elektrische Maschinen und Antriebe: Grundlagen, Betriebsverhalten. Springer, Berlin

    Book  Google Scholar 

  3. Smith A, Delgado D (2010) “Automated AC winding design”, 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), UK, April 2010

    Google Scholar 

  4. Steinbrink J (2008) “Design and Analysis of Windings of Electrical Machines”, International Symposium of Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Italy 2008

    Google Scholar 

  5. Huth G (1999) Optimierung des Wicklungssystems bei permanentmagneterregten AC-Servomotoren. Electr Eng. https://doi.org/10.1007/BF01387158

    Article  Google Scholar 

  6. Malti M, Herzog F (1940) Fractional-slot and dead-coil windings. Electr Eng 59:782–794

    Article  Google Scholar 

  7. Meyer W (2009) Automatisierter Entwurf elektromechanischer Wandler. Hieronymus, Munich

    Google Scholar 

  8. Caruso M et al (2018) A general mathematical formulation for winding layout arrangement of electrical machines. Energies. https://doi.org/10.3390/en11020446

    Article  Google Scholar 

  9. Tang K‑T (2007) Mathematical methods for engineers and scientists, Fourier analysis, partial differential equations and variational methods. Springer, Heidelberg, Berlin, New York

    MATH  Google Scholar 

  10. Giersch H, Harthus H, Vogelsang N (1998) Elektrische Maschinen mit Einführung in die Leistungselektronik. Springer, Wiesbaden

    Google Scholar 

  11. Heiles F (1953) Wicklungen elektrischer Maschinen und ihre Herstellung, 2nd edn. Springer, Heidelberg, Berlin, New York

    Book  Google Scholar 

  12. Tang Y et al (2011) Investigation of winding topologies for permanent magnet in-wheel motors. COMPEL. https://doi.org/10.1108/03321641211184841

    Article  Google Scholar 

  13. Pyrhonen J et al (2013) Design of rotating electrical machines. John Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  14. Gerling D (2012) Frisch gewickelt. AUTOCAD & Inventor Magazin 4/12, Effizienz- und Kostenoptimierung elektrischer Antriebe

    Google Scholar 

  15. Gerling D (2011) Trends und Herausforderungen bei zukünftigen E‑Maschinen und Transformatoren. ZVEI, Fulda

    Google Scholar 

  16. Saadat H (2004) Power systems analysis, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  17. Yokoi Y et al (2016) General formulation of winding factor for fractional-slot concentrated winding design. IET Electr Power Appl J. https://doi.org/10.1049/iet-epa.2015.0092

    Article  Google Scholar 

  18. Bianchi N (2006) Use of the star of slots in designing fractional-slot single layer synchronous motors. IEE Proc Electr Power Appl. https://doi.org/10.1049/ip-epa:20050284

    Article  Google Scholar 

  19. Tingley E (1915) Two- and three phase lap windings in unequal groups. Electr Rev West Electr 66:166–168

    Google Scholar 

  20. Wach P (1997) Multi-phase systems of fractional-slot windings of AC electrical machines. Arch Electr Eng 46:471–486

    Google Scholar 

  21. Samaha-Fahmy M (1973) Harmonic effects in rotating electical machines, Master’s thesis at the Department of Electrical Engineering, McGill University

  22. Staton D, Goss J (2017) Open source electric motor models for commercial EV & hybrid traction motors (Motor Design Limited, CWIEME, Berlin)

    Google Scholar 

  23. Elektroauto-News.net (2018) Test- und Fahrbericht des BMW i3 – eine Woche elektrifiziert unterwegs. https://www.elektroauto-news.net/bmw-i3-test-fahrbericht-erfahrung. Accessed 8 Jan 2019

  24. BMW Group (2016) Technische Daten BMW i3 (94Ah), gültig ab 07/2016. https://www.press.bmwgroup.com/deutschland/article/attachment/T0259598DE/359586. Accessed 4 Jan 2019

  25. Borchardt N, Kasper R (2018) Parametric model of electric machines based on exponential Fourier approximations of magnetic air gap flux density and inductance. COMPEL 37(1):520–535

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the organization Bayern Innovativ within the research project DeTailED—Design of Tailored Electrical Drivetrains.

Author information

Authors and Affiliations

Authors

Contributions

As first author, Svenja Kalt initiated the idea of the presented optimized stator design method, drew up the overall concept of this paper and conducted the analysis. Jonathan Erhard supported as part of his Master’s thesis with the construction of the design concept and implementation. All authors discussed and commented on the article at all stages. Markus Lienkamp made an essential contribution to the conception of the research project. He revised the paper critically for important intellectual content. Markus Lienkamp gave final approval of the version to be published and agrees to all aspects of the work. As a guarantor, he accepts responsibility for the overall integrity of the paper.

Corresponding author

Correspondence to Svenja Kalt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalt, S., Erhard, J. & Lienkamp, M. Optimized stator design method using machine parameter permutation. Forsch Ingenieurwes 83, 853–861 (2019). https://doi.org/10.1007/s10010-019-00385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-019-00385-y

Navigation