Skip to main content

Advertisement

Log in

Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, hot pressing was evaluated as a method of cell fabrication to increase the energy density of next-generation all-solid-state batteries with NCM active material and sulfide solid-state electrolyte. Hot pressing involves consolidating glassy sulfide electrolyte by the application of pressure at a temperature above the electrolyte’s glass transition temperature. Typically, cell stacks are formed at room temperature and retain 15–30% porosity that limits cell energy density. On the other hand, the porosity of hot-pressed cell stacks is reduced to less than 10%. The electrochemical function of hot-pressed cathode composites was assessed as a function of active material and solid-state electrolyte compositions. Specifically, LiNi0.85Co0.10Mn0.05O2 and LiNi0.6Co0.2Mn0.2O2 were studied in combination with either glassy Li7P3S11, glassy Li3PS4, or β-Li3PS4 solid-state electrolytes. Cathode composites composed of LiNi0.6Co0.2Mn0.2O2 and Li3PS4 maintained the best function after hot pressing at 200 °C and 370 MPa for 10 min. It was found that LiNi0.6Co0.2Mn0.2O2’s resistance to microcracking and the inherent stability of Li3PS4’s fully de-networked local structure are critical to maintain good electrochemical function after hot pressing. The results of this study show that hot pressing reduces porosity in the cathode composite and confirms the feasibility of cathode support of consolidated, reinforced glass separators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data is available upon request to the corresponding author.

References

  1. Yersak T, Salvador JR, Schmidt RD, Cai M (2019) Hot pressed, fiber-reinforced (Li2S)70(P2S5)30 solid-state electrolyte separators for Li metal batteries. ACS Applied Energy Materials 2(5):3523–3531. https://doi.org/10.1021/acsaem.9b00290

    Article  CAS  Google Scholar 

  2. Yersak T, Salvador JR, Schmidt RD, Cai M (2021) Hybrid Li-S pouch cell with a reinforced sulfide glass solid-state electrolyte film separator. Int J Appl Glas Sci 12(1):124–134. https://doi.org/10.1111/ijag.15830

    Article  CAS  Google Scholar 

  3. Yersak TA, Salvador JR, Pieczonka NP, Cai M (2019) Dense, melt cast sulfide glass electrolyte separators for Li metal batteries. J Electrochem Soc 166(8):A1535.https://doi.org/10.1149/2.0841908jes

  4. Porz L, Swamy T, Sheldon BW, Rettenwander D, Frömling T, Thaman HL, … Chiang YM (2017) Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater 7(20):1701003. https://doi.org/10.1002/aenm.201701003

  5. Berg EJ, Trabesinger S (2018) Viability of polysulfide retaining barriers in Li-S battery. J Electrochem Soc 165(1):A5001–A5005. https://doi.org/10.1149/2.0021801jes

    Article  CAS  Google Scholar 

  6. Bielefeld A, Weber DA, Janek J (2019) Microstructural modeling of composite cathode for all-solid-state batteries. The Journal of Physical Chemistry C 123:1626–1634. https://doi.org/10.1021/acs.jpcc.8b11043

    Article  CAS  Google Scholar 

  7. Li X, Liang M, Sheng J, Song D, Zhang H, Shi X, Zhang L (2019) Constructing double buffer layers to boost electrochemical performances of NCA cathode for ASSLB. Energy Storage Materials 18:100–106. https://doi.org/10.1016/j.ensm.2018.10.003

    Article  Google Scholar 

  8. Trevey JE, Jung YS, Lee SH (2009) Li2S-P2S5 based solid state electrolytes for lithium ion battery applications. ECS Trans 16(29):181. https://doi.org/10.1149/1.3115321

    Article  CAS  Google Scholar 

  9. Garcia-Mendez R, Smith JG, Neuefeind JC, Siegel DJ, Sakamoto J (2020) Correlating macro and atomic structure with elastic properties and ionic transport of glassy Li2S-P2S5 (LPS) solid electrolyte for solid-state Li metal batteries. Adv Energy Mater 10(19):2000335. https://doi.org/10.1002/aenm.202000335

    Article  CAS  Google Scholar 

  10. Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, … Tatsumisago M (2007) Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion 178(15–18):1163–1167. https://doi.org/10.1016/j.ssi.2007.05.020

  11. Hood ZD, Kates C, Kirkham M, Adhikari S, Liang C, Holzwarth NA (2016) Structural and electrolyte properties of Li4P2S6. Solid State Ionics 284:61–70. https://doi.org/10.1016/j.ssi.2015.10.015

    Article  CAS  Google Scholar 

  12. Chen Y, Cai L, Liu Z, dela Cruz CR, Liang C, An K (2015) Correlation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor. Appl Phys Lett 107:013904. https://doi.org/10.1063/1.4926725

  13. Cheng EJ, Hong K, Taylor NJ, Choe H, Wolfenstine J, Sakamoto J (2017) Mechanical and physical properties of LiNi0.33Mn0.33Co0.33O2 (NMC). J Eur Ceram Soc 37:3218–3217. https://doi.org/10.1016/j.jeurceramsoc.2017.03.048

    Article  CAS  Google Scholar 

  14. Kondrakov AO, Schmidt A, Xu J, Geßwein H, Mönig R, Hartmann P, Janek J (2017) Anisotropic lattice strain and mechanical degradation of high-and low-nickel NCM cathode materials for Li-ion batteries. J Phys Chem C 121(6):3286–3294. https://doi.org/10.1021/acs.jpcc.6b12885

    Article  CAS  Google Scholar 

  15. Nam GW, Park NY, Park KJ, Yang J, Liu J, Yoon CS, Sun YK (2019) Capacity fading of Ni-rich NCA cathodes: effect of microcracking extent. ACS Energy Lett 4(12):2995–3001. https://doi.org/10.1021/acsenergylett.9b02302

    Article  CAS  Google Scholar 

  16. Wang Y, Matsuyama T, Deguchi M, Hayashi A, Nakao A, Tatsumisago M (2016) X-ray photoelectron spectroscopy for sulfide glass electrolytes in the systems Li2S–P2S5 and Li2S–P2S5–LiBr. J Ceram Soc Jpn 124(5):597–601. https://doi.org/10.2109/jcersj2.16006

    Article  CAS  Google Scholar 

  17. Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder JO, Janek J (2017) Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater 29(13):5574–5582. https://doi.org/10.1021/acs.chemmater.7b00931

    Article  CAS  Google Scholar 

  18. Dewald GF et al (2019) Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem Mater 31(20):8328–8337. https://doi.org/10.1021/acs.chemmater.9b01550

  19. Zhang W et al (2017) The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl Mater Interfaces 9(41):35888–35896. https://doi.org/10.1021/acsami.7b11530

  20. Ong SP, Mo Y, Richards WD, Miara L, Leeb HS, Ceder G (2013) Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ Sci 6(1):148–156. https://doi.org/10.1039/C2EE23355J

    Article  CAS  Google Scholar 

  21. Han F et al (2016) Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 6(8):1501590. https://doi.org/10.1002/aenm.201501590

  22. Tsukasaki H, Otoyama M, Mori Y, Mori S, Morimoto H, Hayashi A, Tatsumisago M (2017) Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries. J Power Sources 367:42–48. https://doi.org/10.1016/j.jpowsour.2017.09.031

    Article  CAS  Google Scholar 

  23. Vyazovkin S (2020) Kissinger method in kinetics of materials: things to beware and be aware of. Molecules 25(12):2813. https://doi.org/10.3390/molecules25122813

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Battery Materials Research Program (BMR) in the US Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy’s (EERE) Vehicle Technology Office (VTO) (DE-EE0008857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Yersak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2352 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yersak, T.A., Hao, F., Kang, C. et al. Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries. J Solid State Electrochem 26, 709–718 (2022). https://doi.org/10.1007/s10008-021-05104-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05104-8

Keywords

Navigation