Skip to main content
Log in

Current density enhancement for quantum dot-sensitized solar cells by modulation on the quantum dot loading amount of anatase nanowire array photoelectrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A second spin-coating process was employed for CuInS2 quantum dot (QD)-sensitized TiO2 nanowire-based solar cells, which is anticipated to increase the QD loading amount of photoelectrodes. And the photoelectrodes had been modulated by the quantum dot dispersion concentration and spin-coating cycles. The optical absorption spectra and photoluminescence spectra of different photoelectrodes were investigated, which had exhibited the larger QD loading amount and better charge separation property of photoelectrodes after the second spin-coating process. Meanwhile, a net connection structure had been formed between each nanowire by the suitable QD loading amount of the photoelectrodes, which had simultaneously provided more paths for charge transfer of the solar cells. By optimization, the CuInS2 QD-sensitized TiO2 nanowire solar cells prepared from QD dispersion concentration of 30 mg∙mL−1 and two spin-coating cycles had exhibited higher current density value, which had enhanced the photovoltaic conversion efficiency from 3.9 to 5.03%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao HF, Yin H, Liu XC, Li H, Shi Y, Liu CL, Jin MX, Gao JB, Luo Y, Ding DJ (2019) J Phys Chem Lett 10(11):3064–3070

    Article  CAS  Google Scholar 

  2. Sun B, Ouellette O, Arquer FPG, Voznyy O, Kim YH, Wei MY, Proppe AH, Saidaminov MI, Xu JX, Liu MX, Li PC, Fan JZ, Jo JW, Tan HR, Hoogland S, Lu ZH, Kelley SO, Sargent EH (2018) Nat Commun 9(1):4003

    Article  Google Scholar 

  3. Patel SB, Gohel JV (2019) J Solid State Electrochem 23:2647–2666

    Article  Google Scholar 

  4. Okuhata T, Katayama T, Tamai N (2020) J Phys Chem C 124(1):1099–1107

    Article  CAS  Google Scholar 

  5. Allen TG, Bullock J, Yang XB, Javey A, Wolf SD (2019) Nat Energy 4(11):914–928

    Article  CAS  Google Scholar 

  6. Gong JB, Kong YF, Li JM, Wang KF, Wang XQ, Zhang ZM, Ding ZJ, Xiao XD (2019) Nano Energy 62:205–211

    Article  CAS  Google Scholar 

  7. Dissanayake MAKL, Jaseetharan T, Senadeera GKR, Kumari JMKW (2020) J Solid State Electrochem 24(2):283–292

    Article  CAS  Google Scholar 

  8. Zou XL, Ji L, Ge JB, Sadoway DR, Yu ET, Bard AJ (2019) Nat Commun 10(1):5772

    Article  CAS  Google Scholar 

  9. Sadeghnejad A, Lu L, Cline J, Ozdemir NK, Snyder MA, Kiely CJ, Mclntosh S (2019) ACS Appl Mater Interfaces 11(49):45656–45664

    Article  CAS  Google Scholar 

  10. Pan ZX, Xue L, Rao HS, Zhang J, Zhong XH, Zhu ZL, Jen AKY (2019) Adv Mater 31(49):1903696

    Article  CAS  Google Scholar 

  11. Zhang LL, Rao HS, Pan ZX, Zhong XH (2019) ACS Appl Mater Interfaces 11(44):41415–41423

    Article  CAS  Google Scholar 

  12. Lin Y, Song H, Rao HS, Du ZL, Pan ZX, Zhong XH (2019) J Phys Chem Lett 10(17):4974–4979

    Article  CAS  Google Scholar 

  13. Zhao Q, Hazarika A, Chen XH, Harvey SP, Larson BW, Teeter GR, Liu J, Song T, Xiao CX, Shaw L, Zhang MH, Li GR, Beard MC, Luther JM (2019) Nat Commun 10(1):2842

    Article  Google Scholar 

  14. Jean J (2020) Nat Energy 5(1):10–11

    Article  CAS  Google Scholar 

  15. Hao MM, Bai Y, Zeiske S, Ren L, Liu JX, Yuan YB, Zarrabi N, Cheng NY, Ghasemi M, Chen P, Lyu MQ, He DX, Yun JH, Du Y, Wang Y, Ding SS, Armin A, Meredith P, Liu G, Cheng HM, Wang LZ (2020) Nat Energy 5(1):79–88

    Article  CAS  Google Scholar 

  16. Fukuda T, Takahashi A, Takahira K, Wang HB, Kubo T, Segawa H (2019) Sol Energy Mater Sol Cells 195:220–227

    Article  CAS  Google Scholar 

  17. Kim YH, Che FL, Jo JW, Choi JM, Arquer FPG, Voznyy O, Sun B, Kim JH, Choi MJ, Bermudez RQ, Fan FJ, Tan CS, Bladt E, Walters G, Proppe AH, Zou CQ, Yuan HF, Bals S, Hofkens J, Roeffaers MBJ, Hoogland S, Sargent EH (2019) Adv Mater 31(17):1805580

    Article  Google Scholar 

  18. Siguan MA, Koch DB, Taylor AD, Sun Q, Lami V, Oppenheimer PG, Paulus F, Vaynzof Y (2020) ACS Nano 14(1):384–393

    Article  Google Scholar 

  19. Lan Z, Chen X, Zhang S, Wu JH (2018) J Solid State Electrochem 22(2):347–353

    Article  CAS  Google Scholar 

  20. Choi MJ, Arquer FPG, Proppe AH, Seifitokaldani A, Choi JM, Kim JH, Baek SW, Liu MX, Sun B, Biondi M, Scheffel B, Walters G, Nam DH, Jo JW, Ouellette O, Voznyy O, Hoogland S, Kelley SO, Jung YS, Sargent EH (2020) Nat Commun 11(1):103

    Article  CAS  Google Scholar 

  21. Dissanayake MAKL, Jaseetharan T, Senadeera GKR, Kumari JMKW, Thotawatthage CA, Mellander BE, Albinson I, Furlani M (2019) J Solid State Electrochem 23(6):1787–1794

    Article  CAS  Google Scholar 

  22. Dong Q, Liu HY, Hara H, Starr HE, Dempsey JL, Lopez R (2019) ACS Appl Nano Mater 2(2):767–777

    Article  CAS  Google Scholar 

  23. Du ZL, Artemyev M, Wang J, Tang JG (2019) J Mater Chem A 7(6):2464–2489

    Article  CAS  Google Scholar 

  24. Xing XB, Zhang YH, Shen Q, Wang RX (2020) Sol Energy 195:1–5

    Article  CAS  Google Scholar 

  25. Chen Q, Zhou CY, Zhang XS, Gao FF, Lan YW, Meng YB, Yao CY, Su HF, Zhou LY (2018) J Solid State Electrochem 22(2):453–460

    Article  CAS  Google Scholar 

  26. Du ZL, Yin FF, Han DN, Mao S, Wang J, Aleem AR, Pan ZX, Tang JG (2019) ACS Appl Energy Mater 2(8):5917–5924

    Article  CAS  Google Scholar 

  27. Dastjerdi HT, Prochowic D, Yadav P, Tavakoli MM (2019) Sustain Energ Fuels 3(11):3128–3134

    Article  Google Scholar 

  28. Song H, Pan ZX, Rao HS, Zhong XH (2019) Sol Energy 191:459–467

    Article  CAS  Google Scholar 

  29. Wang W, Zhao LJ, Wang Y, Xue WN, He FF, Xie YL, Li Y (2019) J Am Chem Soc 141(10):4300–4307

    Article  CAS  Google Scholar 

  30. Peng ZY, Liu Z, Chen JL, Ren YJ, Li W, Li C, Chen J (2019) Electrochim. Acta 299:206–212

    CAS  Google Scholar 

  31. Wang WR, Rao HS, Fang WJ, Zhang H, Zhou MS, Pan ZX, Zhang XH (2019) J Phys Chem Lett 10(2):229–237

    Article  CAS  Google Scholar 

  32. Zhang H, Fang WJ, Wang WR, Qian NS, Ji XH (2019) ACS Appl Mater Interfaces 11(7):6927–6936

    Article  CAS  Google Scholar 

  33. Peng ZY, Sun Z, Chen JL, Li W, Chen J, Liu YL, Chen KQ (2020) Sol Energy 205:161–169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51802028); Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3527); the Key Scientific Research Project of the Education Department of Hunan Province (Grant No.16A002); and the Key Laboratory of Efficient & Clean Energy Utilization, the Education Department of Hunan Province (Grant No. 2017NGQ007). Thanks for the measurement support from Hunan Province 2011 Collaborative Innovation Center of Clean Energy and Smart Grid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoyin Peng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Peng, Z., Ning, Z. et al. Current density enhancement for quantum dot-sensitized solar cells by modulation on the quantum dot loading amount of anatase nanowire array photoelectrodes. J Solid State Electrochem 25, 2087–2096 (2021). https://doi.org/10.1007/s10008-021-04969-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04969-z

Keywords

Navigation