Skip to main content
Log in

Theoretical analysis of an intermediate band in Sn-doped hematite with wide-spectrum solar response

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hematite α-Fe2O3 is exposed to be an efficient photocatalytic material for the photoelectrochemical water splitting process under visible light. In the present work, we have improved the photocatalytic activity of hematite by varying tin concentration substituted for Fe in pristine hematite. To investigate the influence of the contents of Sn on the photocatalytic activity, various key properties like electronic structure and optoelectronic properties were studied based on density functional theory using generalized gradient approximation plus on-site Hubbard interaction within the WIEN2k computer program. The results of the electronic band structure show the insulating character of the pristine hematite exhibits a bandgap of 2.17 eV equals to Exp. one. The electronic structure calculations of the Sn-doped hematite explore the engineering of the orbitals around the Fermi level and result in a reduction in the bandgap, which is attributed to the corresponding Sn contents. The doping of Sn in Fe2O3 would introduce sub-bands (intermediate band) in between the valence band maximum (VBM) and Fermi level EF, and more interestingly, half-filled intermediate bands appear around the Fermi level with the increase of Sn contents. To see the effect of intermediate bands on the optoelectronic features of the Sn-doped hematite, we also calculated the optical properties of pristine and doped hematite, which predict extra peaks assigned to transitions of electrons from intermediate bands in the infrared region. Our findings explore that the presence of intermediate bands facilitates the PEC activity of water splitting of Fe2O3, shifting from visible light to infrared region. Here, we demonstrate the idea of intermediate bands in hematite for distinctive device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    CAS  PubMed  Google Scholar 

  2. Tan HL, Abdi FF, Ng YH (2019) Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem Soc Rev 48(5):1255–1271

    CAS  PubMed  Google Scholar 

  3. Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health 15(1):16

    Google Scholar 

  4. Zinatloo-Ajabshir S, Morassaei MS, Amiric O, Salavati-Niasari M (2020) Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram Int 46(5):6095–6107

    CAS  Google Scholar 

  5. Zinatloo-Ajabshir S, Ghasemian N, Salavati-Niasari M (2020) Green synthesis of Ln2Zr2O7 (Ln = Nd, Pr) ceramic nanostructures using extract of green tea via a facile route and their efficient application on propane-selective catalytic reduction of NOx process. Ceram Int 46(1):66–73

    CAS  Google Scholar 

  6. Zinatloo-Ajabshir S, Morassaei MS, Salavati-Niasari M (2018) Nd2Sn2O7 nanostructures as highly efficient visible light photocatalyst: green synthesis using pomegranate juice and characterization. J Clean Prod 198:11–18

    CAS  Google Scholar 

  7. Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M (2017) Sonochemical synthesis, characterization and photodegradation of organic pollutant over Nd2O3 nanostructures prepared via a new simple route. Sep Purif Technol 178:138–146

    CAS  Google Scholar 

  8. Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari S (2017) Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J Mol Liq 231:306–313

    CAS  Google Scholar 

  9. Mortazavi-Derazkola S, Zinatloo-Ajabshir S, Salavati-Niasari M (2017) Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Adv Powder Technol 28(3):747–754

    CAS  Google Scholar 

  10. Zinatloo-Ajabshir S, Salehi Z, Salavati-Niasari M (2018) Green synthesis and characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high visible-light photocatalytic activity of organic contaminants. J Alloys Compd 763:314–321

    CAS  Google Scholar 

  11. Ling YC, Wang GM, Wheeler DA, Zhang JZ, Li Y (2011) Sn–doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11(5):2119–2125

    CAS  PubMed  Google Scholar 

  12. Iordanova N, Dupuis M, Rosso KM (2005) Charge transport in metal oxides: a theoretical study of hematite α–Fe2O3. J Chem Phys 122(14):144305–144314

    CAS  PubMed  Google Scholar 

  13. Tian CM, Li WW, Lin YM, Yang ZZ, Wang L, Du YG, Xiao HY, Qiao L, Zhang J, Chen L, Qi DC, MacManus-Driscoll JL, Zhang KHL (2020) Electronic structure, optical properties and photoelectrochemical activity of Sn doped Fe2O3 thin films. J Phys Chem C 124(23):12548–12558

    CAS  Google Scholar 

  14. Mettenbörger A, Gönüllü Y, Fischer T, Heisig T, Sasinska A, Maccat C, Carraro G, Sada C, Barreca D, Mayrhofer L, Moseler M, Held A, Mathur S (2016) Nano Energy 19:415–427

    Google Scholar 

  15. Castelli IE, Olsen T, Datta S, Landis DD, Dahl S, Thygesen KS, Jacobsen KW (2011) Computational screening of perovskite metal oxides for optimal solar light capture. Nano Lett 11:1775–1781

    Google Scholar 

  16. Meng XY, Qin GW, Li S, Wen XH, Ren YP, Pei WL, Zuo L (2011) Enhanced photoelectrochemical activity for Cu and Ti doped hematite: the first principles calculations. Appl Phys Lett 98(11):112104–112106

    Google Scholar 

  17. Hufnagel AG, Hajiyani H, Zhang S, Li T, Kasian O, Gault B, Breitbach B, Bein TF, Rohlfing D, Schue C, Pentcheva R (2018) Why tin-doping enhances the efficiency of hematite photoanodes for water splitting–the full picture. Adv Funct Mater 14:1804472–1804482

    Google Scholar 

  18. Cesar I, Kay A, Martinez JAG, Gratzel M (2006) Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J Am. Chem. Soc 128:4582–4583

    CAS  PubMed  Google Scholar 

  19. Zhang S, Hajiyani H, Hufnagel AG, Kampmann J, Breitbach B, Bein T, Fattakhova-Rohlfing D, Pentcheva R, Scheu C (2020) Sn-doped hematite for photoelectrochemical water splitting: the effect of Sn concentration Z. Phys Chem 234(4):683–698

    CAS  Google Scholar 

  20. Aguilera I, Palacios P, Wahnon P (2011) Understanding Ti intermediate-band formation in partially inverse thiospinel MgIn2S4 through many-body approaches. Phys Rev B 84:115101–115106

    Google Scholar 

  21. Luque A, Martı A (1997) Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett 78(26):5014–5017

    CAS  Google Scholar 

  22. Franco FD, Zaffora A, Santamaria M (2018) Bandgap narrowing and dielectric constant enhancement of (NbxTa(1-x))2O5 by electrochemical nitrogen doping. Electrochim Acta 265:326–335

    Google Scholar 

  23. Blah P, Schwarz K, Madsen G, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Austria, Karlheinz Schwarz, Techn Universitt Wien

    Google Scholar 

  24. Osterloh FE (1927) The calculation of atomic fields. Proc Camb Philos Soc 23:542–548

    Google Scholar 

  25. Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Acta Chem Scand 48:73–79

    CAS  Google Scholar 

  26. Hohenberg P, Kohn W (1964) Nobel Lecture, Inhomogeneous electron gas. Rev. Mod. Phys 136:864–871

    Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    CAS  Google Scholar 

  28. Li AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52:R5467

    Google Scholar 

  29. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 16:5188–5192

    Google Scholar 

  30. Sandratskii LM, Uhl M, Kubler J (1996) Band theory for electronic and magnetic properties of α–Fe2O3. J Phys Condens Matter 8(8):983–989

    CAS  Google Scholar 

  31. Zhou Z, Huo P, Guo L, Prezhdo OV (2015) Understanding hematite doping with group IV elements: a DFT+U study. J Phys. Chem C 119:26303–26310

    CAS  Google Scholar 

  32. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev B 45:566

    CAS  Google Scholar 

  33. Rollmann M, Rohrbach A, Entel P, Hafne J (2004) First–principles calculation of the structure and magnetic phases of hematite. J Appl Phys 69:165107–165119

    Google Scholar 

  34. Punkkinen MPJ, Kokko K, Hergert W, Vayrynen IJ (1999) Fe2O3 within the LSDA + U approach. J Phys Condens Matter 111:2341–2349

    Google Scholar 

  35. Liao PL, Carter EA (2011) Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α–Fe2O3) as a benchmark. Phys Chem Chem Phys 13(33):15189–15199

    CAS  PubMed  Google Scholar 

  36. Liao PL, Carter EA (2012) Understanding intermediate-band solar cells. Nat Photon 6:146–152

    Google Scholar 

  37. Lopez N, Reichertz LA, Yu KM, Campman K, Walukiewicz W (2011) Engineering the electronic band structure for multiband solar cells. Phys Rev Lett 106(2):028701–028704

    CAS  PubMed  Google Scholar 

  38. Droubay T, Rosso KM, Heald SM, McCready DE, Wang CM, Chambers SA (2007) Structure, magnetism, and conductivity in epitaxial Ti-doped Fe2O3 hematite: experiment and density functional theory calculations. Phys. Rev. B 75(10):104412

    Google Scholar 

  39. Yang C, Qin M, Wang Y, Wan D, Huang F, Lin J (2013) Observation of an intermediate band in Sn–doped chalcopyrites with wide-spectrum solar response. Phys Rev Lett 3:1286–1292

    Google Scholar 

  40. Rani BJ, Ravi G, Yuvakkumar R, Ravichandran S, Ameen F, AlNadhary S (2019) Sn doped α-Fe2O3 (Sn=0,10,20,30 wt%) photoanodes for photoelectrochemical water splitting applications. Renewable Energy 133:566–574

    Google Scholar 

  41. Orlandi M, Mazzi A, Arbana G, Bazzanella N, Rudatisb P, Caramori S, Patel N, Fernandes R, Bignozzi CA, Miotello A (2016) On the effect of Sn-doping in hematite anodes for oxygen evolution. Electrochim Acta 214:345–353

    CAS  Google Scholar 

  42. Sharma V, Wang C, Lorenzini RG, Ma R, Zhu Q, Sinkovits DW, Pilania G, Oganov AR, Kumar S, Sotzing GA, Boggs SA, Ramprasad R (2014) Rational design of all organic polymer dielectrics. Nat Commun 5(1):4845–4852

    CAS  PubMed  Google Scholar 

  43. Ghiringhelli LM, Vybiral J, LeVchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114(10):105503–105507

    PubMed  Google Scholar 

  44. Kondofersky I, Dunn HK, Mller A, Mandlmeier B, Feckl JM, Fattakhova-Rohlfingn D, Scheu C, Peter LM, Bein T (2015) Electron collection in HostGuest nanostructured hematite photoanodes for water splitting: the influence of scaffold doping density. Appl Mater Interfaces 7(8):4623–4630

    CAS  Google Scholar 

  45. Wasserman AL (2005) Effective masses. Encyclopedia of Condensed Matter Physics. 1–5. doi:https://doi.org/10.1016/b0-12-369401-9/00457-5

Download references

Funding

W. Khan and S. A. Khan were supported by the CEDAMNF project (CZ.02.1.01/0.0/0.0/15_003/0000358). W. Khan was also supported by the Higher Education Commission: No 21: 2484/SRGP/R&D/HEC/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilayat Khan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, W., Minar, J., Khan, S.A. et al. Theoretical analysis of an intermediate band in Sn-doped hematite with wide-spectrum solar response. J Solid State Electrochem 25, 731–742 (2021). https://doi.org/10.1007/s10008-020-04849-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04849-y

Keywords

Navigation