Skip to main content
Log in

In-situ construction of NiCo2O4 nanoarrays on La0.8Sr0.2MnO3-δ electrodes for intermediate temperature solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Novel NiCo2O4 nanoarrays have been in-situ grown on a La0.8Sr0.2MnO3-δ(LSM) cathode through a hydrothermal method, which presents the enhanced electrochemical performances of the LSM cathode for the intermediate temperature solid oxide fuel cells. XRD and SEM have been used to characterize phase structure and morphology of NiCo2O4 nanoarrays. The LSM cathode, modified by the NiCo2O4 nanoarrays, exhibits excellent electrochemical performances compared with the bare LSM cathode. The maximum peak power density of single cell, based on the NiCo2O4 nanoarrays modified the LSM cathode, reaches 957 mW cm−2 at 800 °C, which is almost two times higher than that for the cell based on the bare LSM cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352

    Article  CAS  PubMed  Google Scholar 

  2. Dokiya M (2002) SOFC system and technology. Solid State Ionics 152-153:383–392

    Article  CAS  Google Scholar 

  3. Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sust Energ Rev 13(9):2430–2440

    Article  CAS  Google Scholar 

  4. Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energ Rev 6(5):433–455

    Article  CAS  Google Scholar 

  5. Moon H, Kim SD, Hyun SH, Kim HS (2008) Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. Int J Hydrog Energy 33(6):1758–1768

    Article  CAS  Google Scholar 

  6. Choudhury A, Chandra H, Arora A (2013) Application of solid oxide fuel cell technology for power generation—a review. Renew Sust Energ Rev 20:430–442

    Article  CAS  Google Scholar 

  7. Setevich CF, Mogni LV, Caneiro A, Prado FD (2012) Optimum cathode configuration for IT-SOFC using La0.4Ba0.6CoO3−δ and Ce0.9Gd0.1O1.95. Int J Hydrog Energy 37(19):14895–14901

    Article  CAS  Google Scholar 

  8. Serra JM, Vert VB, Buchler O, Meulenberg WA, Buchkremer HP (2008) IT-SOFC supported on mixed oxygen ionic-electronic conducting composites. Chem Mater 20(12):3867–3875

    Article  CAS  Google Scholar 

  9. Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45(15-16):2423–2435

    Article  CAS  Google Scholar 

  10. Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104(10):4791–4844

    Article  CAS  PubMed  Google Scholar 

  11. Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12(9):1039–1050

    Article  CAS  Google Scholar 

  12. Wei B, Lv Z, Huang XQ, Liu ML, Li N, Su WH (2008) Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite oxide for IT-SOFC cathode. J Power Sources 176(1):1–8

    Article  CAS  Google Scholar 

  13. Pavone M, Ritzmann AD, Carter EA (2011) Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ Sci 4(12):4933–4937

    Article  CAS  Google Scholar 

  14. Tsai T, Barnett SA (1997) Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics 93(3-4):207–217

    Article  CAS  Google Scholar 

  15. Rembelski D, Viricelle JP, Combemale L, Rieu M (2012) Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12(2):256–264

    Article  CAS  Google Scholar 

  16. Haanappel VAC, Mai A (2006) Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes. J Solid State Ionics 117:2033–2037

    Article  CAS  Google Scholar 

  17. Yang J, Muroyama H, Matsui T, Eguchi K (2010) A comparative study on polarization behavior of (La,Sr)MnO3 and (La,Sr)CoO3 cathodes for solid oxide fuel cells. Int J Hydrog Energy 35(19):10505–10512

    Article  CAS  Google Scholar 

  18. Liu ZB, Zhang XM, Huang ZD, Zhao Z, Cui DA, Cheng MJ (2016) Co-synthesized (La0.8Sr0.2)0.9MnO3-Y0.15Zr0.85O2 composite for solid oxide fuel cell cathode. Int J Hydrog Energy 41(46):21385–21393

    Article  CAS  Google Scholar 

  19. Su Q, Yoon D, Sisman Z, Khatkhatay F, Jia QX, Manthiram A, Wang HY (2013) Vertically aligned nanocomposite La0.8Sr0.2MnO3−δ/Zr0.92Y0.08O1.96 thin films as electrode/electrolyte interfacial layer for solid oxide reversible fuel cells. Int J Hydrog Energy 38(36):16320–16327

    Article  CAS  Google Scholar 

  20. Zhang XM, Liu L, Zhao Z, Tu BF, Qu DR, Cui DA, Wei XM, Chen XB, Cheng MJ (2015) Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode. Nano Lett 15(3):1703–1709

    Article  CAS  PubMed  Google Scholar 

  21. Park J, Zou J, Chung J (2010) Synthesis and evaluation of nano-size lanthanum strontium manganite–yttria-stablized zirconia composite powders as cathodes for solid oxide fuel cells. J Power Sources 95:4593–4599

    Article  CAS  Google Scholar 

  22. Chen KF, Lv Z, Ai N, Chen XJ, Hu JY, Huang XQ, Su WH (2007) Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs. J Power Sources 167(1):84–89

    Article  CAS  Google Scholar 

  23. Sholklapper TZ, Radmilovic V, Jacobson CP, Visco SJ, De Jonghe LC (2008) Nanocomposite Ag-LSM solid oxide fuel cell electrodes. J Power Sources 175(1):206–210

    Article  CAS  Google Scholar 

  24. Yun JW, Yoon SP, Park SY, Han JH, Nam SW, Lim TH, Kim JS (2009) Modifying the cathodes of intermediate-temperature solid oxide fuel cells with a Ce0.8Sm0.2O2 sol–gel coating. Int J Hydrog Energy 34(22):9213–9219

    Article  CAS  Google Scholar 

  25. Neburchilov V, Wang H, Martin J, Qu W (2010) A review on air cathodes for zinc–air fuel cells. J Power Sources 195(5):1271–1291

    Article  CAS  Google Scholar 

  26. De Koninck M, Marsan B (2008) MnxCu1-xCo2O4 used as bifunctional electrocatalyst in alkaline medium. Electrochim Acta 53(23):7012–7021

    Article  CAS  Google Scholar 

  27. Zhu H, Zheng S, Huang Y, Wu L, Sun S (2013) Monodisperse MxFe3xO4 (M= Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett 13(6):2947–2951

    Article  CAS  PubMed  Google Scholar 

  28. Cui B, Lin H, Li J, Li X, Yang J, Tao J (2008) Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv Funct Mater 18(9):1440–1447

    Article  CAS  Google Scholar 

  29. Chen D, Huang C, Ran R, Park HJ, Kwak C, Shao ZP (2011) New Ba0.5Sr0.5Co0.8Fe0.2O3−δ+Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity. Electrochem Commun 13(2):197–199

    Article  CAS  Google Scholar 

  30. Li SS, Yan RQ, Wu GJ, Xie K, Cheng JG (2013) Composite oxygen electrode LSM-BCZYZ impregnated with Co3O4 nanoparticles for steam electrolysis in a proton-conducting solid oxide electrolyzer. Int J Hydrog Energy 38(35):14943–14951

    Article  CAS  Google Scholar 

  31. Ni CS, Vohs JM, Gorte RJ, Irvine JTS (2014) Fabrication and characterisation of a large-area solid oxide fuel cell based on dual tape cast YSZ electrode skeleton supported YSZ electrolytes with vanadate and ferrite perovskite-impregnated anodes and cathodes. J Mater Chem A 2(45):19150–19155

    Article  CAS  Google Scholar 

  32. Huang Y, Vohs JM, Gorte RJ (2006) SOFC cathodes prepared by infiltration with various LSM precursors. Electrochem Solid-State Lett 9(5):A237–A240

    Article  CAS  Google Scholar 

  33. Li YG, Zhang C, Xu TH, Lu ZY, Wu XC, Wan PB, Sun XM, Jiang L (2015) Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv Funct Mater 25(11):1737–1744

    Article  CAS  Google Scholar 

  34. Yang Q, Li T, Lu ZY, Sun XM, Liu JF (2014) Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nano 6:11789–11794

    CAS  Google Scholar 

  35. Yang JL, Wang JJ, Tang YJ (2013) In situ self-catalyzed formation of core–shell LiFePO4@CNT nanowires for high rate performance lithium-ion batteries. J Mater Chem 1(25):7306–7311

    Article  CAS  Google Scholar 

  36. Wang JJ, Yang JL, Tang YL (2013) Surface aging at olivine LiFePO4: a direct visual observation of iron dissolution and the protection role of nano-carbon coating. J Mater Chem 1(5):1579–1586

    Article  CAS  Google Scholar 

  37. Wang JJ, Yang JL, Tang YL (2014) Size-dependent surface phase change of lithium iron phosphate during carbon coating. Nat Commun 5:3415–3422

    Article  CAS  PubMed  Google Scholar 

  38. Sun JQ, Li YP, Liu XJ, Yang Q, Liu JF, Sun XM, Evans DG, Duan X (2012) Hierarchical cobalt iron oxide nanoarrays as structured catalysts. Chem Commun 48(28):3379–3381

    Article  CAS  Google Scholar 

  39. Xu WW, Lu ZY, Lei XD, Li YP, Sun XM (2014) A hierarchical Ni–Co–O@Ni–Co–S nanoarray as an advanced oxygen evolution reaction electrode. Phys Chem Chem Phys 16(38):20402–20405

    Article  CAS  PubMed  Google Scholar 

  40. Chueh WC, Hao Y, Jung WC, Haile SM (2012) High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes. Nat Mater 11:155–161

    Article  CAS  Google Scholar 

  41. Liang YY, Wang HL, Zhou JW, Li YJ, Wang J, Regier T, Dai HJ (2012) Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523

    Article  CAS  PubMed  Google Scholar 

  42. Liu JP, Li YY, Huang XT, Li GY, Li XK (2008) Layered double hydroxide nano-and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes. Adv Funct Mater 18(9):1448–1458

    Article  CAS  Google Scholar 

  43. Yang CH, Adam C, Chen FL (2010) High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen electrode performance. Int J Hydrog Energy 35(8):3221–3226

    Article  CAS  Google Scholar 

  44. Huang YY, Vohs JM, Gorte RJ (2005) Characterization of LSM-YSZ composites prepared by impregnation methods. J Electrochem Soc 152(7):A1347–A1353

    Article  CAS  Google Scholar 

  45. Qi WT, Xie K, Liu M, Wu GJ, Wang Y, Zhang Y, Wu YC (2014) Single-phase nickel-doped ceria cathode with in situ grown nickel nanocatalyst for direct high-temperature carbon dioxide electrolysis. RSC Adv 4(76):40494–40504

    Article  CAS  Google Scholar 

  46. Qi WT, Ruan C, Wu GJ, Zhang Y, Wang Y, Xie K, Wu YC (2014) Reversibly in-situ anchoring copper nanocatalyst in perovskite titanate cathode for direct high-temperature steam electrolysis. Int J Hydrog Energy 39(11):5485–5496

    Article  CAS  Google Scholar 

Download references

Funding

This project is supported by the National Natural Science Foundation of China (Grant Nos. 51372063, 51402078, and 51772072), the 111 Project (B18018), the Fundamental Research Funds for the Central Universities (Nos. JZ2015HGCH0150 and JZ2016HGTB0719), the Young Scholar Enhancement Foundation (Plan B) of HFUT, China (JZ2016HGTB0711), Provincial Natural Science Research Program of Higher Education Institutions of Anhui Province (Grant No. KJ2016SD31).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhang or Yucheng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Wei, H., Zhang, Y. et al. In-situ construction of NiCo2O4 nanoarrays on La0.8Sr0.2MnO3-δ electrodes for intermediate temperature solid oxide fuel cells. J Solid State Electrochem 22, 2367–2374 (2018). https://doi.org/10.1007/s10008-018-3944-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3944-9

Keywords

Navigation