Skip to main content
Log in

Highly increased breakdown potential of anodic films on aluminum using a sealed porous layer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The growth of a uniform barrier-type anodic film on aluminum is usually terminated by electric breakdown, which is controlled by the resistance of electrolyte or anion concentration. In this study, highly resistive porous layers have been introduced by anodizing aluminum in sulfuric acid electrolyte followed by boiling water treatment to examine their influence on the electric breakdown potential. The pores of the porous alumina film are sealed by forming hydrated alumina (pseudo-boehmite) after the boiling water treatment. The breakdown potential increases to over 1500 V for the pore-sealed aluminum specimens on anodizing in sodium tungstate electrolyte. The electrochemical impedance spectroscopy measurements revealed an increased resistance of the porous layer after the pore-sealing treatment. GDOES depth profile analysis disclosed that the sealed porous layer impedes the incorporation of tungsten species into the barrier layer. The introduction of a highly resistive layer that also suppresses the anion incorporation on aluminum is effective in increasing the breakdown potential of anodic films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pringle JPS (1980) The anodic oxidation of superimposed metallic layers: theory. Electrochim Acta 25(11):1423–1437

    Article  CAS  Google Scholar 

  2. Uchi H, Kanno T, Alwitt RS (2001) Structural features of crystalline anodic alumina films. J Electrochem Soc 148(1):B17–B23

    Article  CAS  Google Scholar 

  3. Di Franco F, Zampardi G, Santamaria M, Di Quarto F, Habazaki H (2012) Characterization of the solid state properties of anodic oxides on magnetron sputtered Ta, Nb and Ta-Nb alloys. J Electrochem Soc 159(1):C33–C39

    Article  CAS  Google Scholar 

  4. Freeman Y, Alapatt GF, Harrell WR, Lessner P (2012) Electrical characterization of high voltage polymer tantalum capacitors. J Electrochem Soc 159(10):A1646–A1651

    Article  CAS  Google Scholar 

  5. Komiyama S, Tsuji E, Aoki Y, Habazaki H, Santamaria M, Quarto F, Skeldon P, Thompson GE (2012) Growth and field crystallization of anodic films on Ta–Nb alloys. J Solid State Electrochem 16(4):1595–1604

    Article  CAS  Google Scholar 

  6. Scaduto G, Santamaria M, Bocchetta P, Di Quarto F (2014) The effect of hydration layers on the anodic growth and on the dielectric properties of Al2O3 for electrolytic capacitors. Thin Solid Films 550:128–134

    Article  CAS  Google Scholar 

  7. Miller K, Nalwa KS, Bergerud A, Neihart NM, Chaudhary S (2010) Memristive behavior in thin anodic titania. IEEE Electron Device Lett 31(7):737–739

    Article  CAS  Google Scholar 

  8. Zaffora A, Cho DY, Lee KS, Di Quarto F, Waser R, Santamaria M, Valov I (2017) Electrochemical tantalum oxide for resistive switching memories. Adv Mater 29(43). https://doi.org/10.1002/adma.201703357

  9. Wood GC, Pearson C (1967) Dielectric breakdown of anodic oxide films on valve metals. Corros Sci 7(2):119–125

    Article  CAS  Google Scholar 

  10. Yahalom J, Hoar TP (1970) Galvanostatic anodizing of aluminium. Electrochim Acta 15(6):877–884

    Article  CAS  Google Scholar 

  11. Burger FJ, Wu J (1971) Dielectric breakdown in electrolytic capacitors. J Electrochem Soc 118(12):2039–2042

    Article  CAS  Google Scholar 

  12. Ikonopisov S, Girginov A, Machkova M (1979) Electrical breaking down of barrier anodic films during their formation. Electrochim Acta 24(4):451–456

    Article  CAS  Google Scholar 

  13. Kato M, Uchida E, Kudo T (1984) Influence of anion on the breakdown voltage of barrier type anodic oxide film on aluminum. J Met Finish Soc Jpn 35(10):475–479

    Article  CAS  Google Scholar 

  14. Zahavi J, Yahalom J (1971) Temperature increase during formation of anodic films on tantalum. Electrochim Acta 16(1):89–99

    Article  CAS  Google Scholar 

  15. Ikonopisov SM, Girginov AA (1975) Analysis of methods for indication of drilling phenomena in aluminum anodizing. Dokladi Na Bolgarskata Akademiya Na Naukite 28:257–260

    CAS  Google Scholar 

  16. Ikonopisov S (1977) Theory of electrical breakdown during formation of barrier anodic films. Electrochim Acta 22(10):1077–1082

    Article  CAS  Google Scholar 

  17. Albella JM, Montero I, Martinezduart JM (1987) A theory of avalanche breakdown during anodic-oxidation. Electrochim Acta 32(2):255–258

    Article  CAS  Google Scholar 

  18. Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M (1997) Formation and breakdown of anodic oxide films on aluminum in boric acid borate solutions. J Electrochem Soc 144(3):866–876

    Article  CAS  Google Scholar 

  19. Skeldon P, Thompson GE, Wood GC (1987) Formation of relatively pure alumina films by anodic polarization. Thin Solid Films 148(3):333–341

    Article  CAS  Google Scholar 

  20. Takahashi H, Nagayama M (1976) Pore-filling of porous anodic oxide films on aluminum. Kinzoku Hyomen Gijutsu 27:338–343

    CAS  Google Scholar 

  21. Takahashi H, Nagayama M (1978) The determination of the porosity of anodic oxide films on aluminium by the pore-filling method. Corros Sci 18(10):911–925

    Article  CAS  Google Scholar 

  22. Shimada H, Sakairi M, Takahashi H (2002) Rise of breakdown potential of anodic oxide film on aluminum by pore-filling method. J Surf Finish Soc Jpn 53:142–148

    Article  CAS  Google Scholar 

  23. Sunada M, Takahashi H, Kikuchi T, Sakairi M, Hirai S (2007) Dielectric properties of al-si composite oxide films formed on electropolished and dc-etched aluminum by electrophoretic sol-gel coating and anodizing. J Solid State Electrochem 11:1375–1384

    Article  CAS  Google Scholar 

  24. Jha H, Kikuchi T, Sakairi M, Takahashi H (2008) Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina. Nanotechnol 19:6

    Article  CAS  Google Scholar 

  25. Wood GC, O'Sullivarv JP (1969) Electron-optical examination of sealed anodic alumina films: surface and interior effects. J Electrochem Soc 116(10):1351–1357

    Article  CAS  Google Scholar 

  26. Bartolome MJ, Lopez V, Escudero E, Caruana G, Gonzalez JA (2006) Changes in the specific surface area of porous aluminium oxide films during sealing. Surf Coat Technol 200(14-15):4530–4537

    Article  CAS  Google Scholar 

  27. Ono S, Masuko N (2003) Evaluation of pore diameter of anodic porous films formed on aluminum. Surf Coat Technol 169:139–142

    Article  CAS  Google Scholar 

  28. Brown F, Mackintosh WD (1973) The use of rutherford backscattering to study the behavior of ion-implanted atoms during anodic oxidation of aluminum: Ar, Kr, Xe, K, Rb, Cs, Cl, Br, I. J Electrochem Soc 120(8):1096–1102

    Article  CAS  Google Scholar 

  29. Koda M, Takahashi H, Nagayama M (1983) Reaction of porous anodic oxide films on aluminum with hot water IV: analysis of the film structure by Gravimetry and pore filling method. Kinzoku Hyomen Gijutsu 34:460–466

    CAS  Google Scholar 

  30. Koda M, Takahashi H, Nagayama M (1982) Reaction of porous anodic oxide films on aluminum with hot water I. Effect of film thickness and reaction time on the degree of hydration and acod-dissolution characteristics. Kinzoku Hyomen Gijutsu 33:242–248

    CAS  Google Scholar 

  31. Girginov A, Popova A, Kanazirski I, Zahariev A (2006) Characterization of complex anodic alumina films by electrochemical impedance spectroscopy. Thin Solid Films 515(4):1548–1551

    Article  CAS  Google Scholar 

  32. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta 55(21):6218–6227

    Article  CAS  Google Scholar 

  33. Harkness AC, Young L (1966) High-resistance anodic oxide films on aluminum. Can J Chem 44(20):2409–2413

    Article  CAS  Google Scholar 

  34. Wood GC, Skeldon P, Thompson GE, Shimizu K (1996) A model for the incorporation of electrolyte species into anodic alumina. J Electrochem Soc 143(1):74–83

    Article  CAS  Google Scholar 

  35. Skeldon P, Shimizu K, Thompson GE, Wood GC (1994) Mobile tracers: their use in understanding key features of anodic alumina film formation. Phil Trans R Soc Lond A 348(1687):295–314

    Article  CAS  Google Scholar 

  36. Habazaki H, Shimizu K, Skeldon P, Thompson GE, Wood GC (1996) The incorporation of metal ions into anodic films on aluminium alloys. Philos Mag B 73(3):445–460

    Article  CAS  Google Scholar 

  37. Yao M, Chen J, Su Z, Peng Y, Zou P, Yao X (2016) Anodic oxidation in aluminum electrode by using hydrated amorphous aluminum oxide film as solid electrolyte under high electric field. ACS Appl Mater Interfaces 8(17):11100–11107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by the Light Metal Educational Foundation. A part of this work was conducted at “Joint-use Facilities: Laboratory of Nano-Micro Material Analysis,” Hokkaido University, supported by “Nanotechnology Platform” Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Habazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, JH., Sato, Y., Kowalski, D. et al. Highly increased breakdown potential of anodic films on aluminum using a sealed porous layer. J Solid State Electrochem 22, 2073–2081 (2018). https://doi.org/10.1007/s10008-018-3913-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3913-3

Keywords

Navigation