Skip to main content
Log in

Exploring hesperidin-copper complex as an enzyme mimic for monitoring macrophage activity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present study evaluates the potential of hesperidin-copper complex for sensing superoxide anions, which is an important marker for the diagnosis of oxidative stress-based disorders. The metal ion center present in the complex scavenges the superoxide, which can be detected through electrochemical method. The hesperidin-copper complex was successfully synthesized employing a simple room temperature method and characterized. The cyclic voltammograms recorded using a working electrode modified with hesperidin-copper complex show a reduction peak at − 0.175 V, which can be attributed to the electron transfer involving the copper center present in the complex. The sensing study using amperometric techniques in the presence of different concentrations of superoxide anions reveals that hesperidin-copper complex-coated working electrode exhibits good sensitivity and linearity. The limit of detection (LOD) for this enzyme-less sensor is 0.547 μM and limit of quantification (LOQ) is 1.65 μM. The response time was less than 2 s. This sensor was also not affected by common interferents. The sensor performance was assessed in vitro for the quantification of reactive oxygen species in macrophages under stimulated and unstimulated conditions. The results demonstrate that this sensor can be employed for clinical applications involving diagnosis of inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Botany 2012:1–26. https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  2. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804

    CAS  Google Scholar 

  3. Birben E, Murat U, Md S et al (2012) Oxidative stress and antioxidant defense. WAO J 5:9–19

    CAS  Google Scholar 

  4. Potapovich AI, Kostyuk VA (2003) Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Biochemistry Biokhimiia 68(5):514–519. https://doi.org/10.1023/A:1023947424341

    Article  CAS  Google Scholar 

  5. Halliwell B, Gutteridge JMC (1989) Free radical in biology and medicine, 2nd edn. Clarendon Press, Oxford University Press, Oxford

    Google Scholar 

  6. Kurutas EB (2015) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15(1):71. https://doi.org/10.1186/s12937-016-0186-5

    Article  Google Scholar 

  7. MatÉs JM, Pérez-Gómez C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32(8):595–603. https://doi.org/10.1016/S0009-9120(99)00075-2

    Article  Google Scholar 

  8. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108(16):1912–1916. https://doi.org/10.1161/01.CIR.0000093660.86242.BB

    Article  Google Scholar 

  9. Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncology 2012:137289

    Article  Google Scholar 

  10. Furukawa S, Fujita T, Shumabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761. https://doi.org/10.1172/JCI21625

    Article  CAS  Google Scholar 

  11. Kim SK, Kim D, You J-M, Han HS, Jeon S (2012) Non-enzymatic superoxide anion radical sensor based on Pt nanoparticles covalently bonded to thiolated MWCNTs. Electrochim Acta 81:31–36. https://doi.org/10.1016/j.electacta.2012.07.070

    Article  CAS  Google Scholar 

  12. Bayr H (2005) Reactive oxygen species. Crit Care Med 33(Suppl):S498–S501. https://doi.org/10.1097/01.CCM.0000186787.64500.12

    Article  Google Scholar 

  13. Greenwald RA (1990) Superoxide dismutase and catalase as therapeutic agents for human diseases a critical review. Free Radic Biol Med 8(2):201–209. https://doi.org/10.1016/0891-5849(90)90092-W

    Article  CAS  Google Scholar 

  14. Hyland K, Auclair C (1981) The formation of superoxide radical anions by a reaction between O< sub> 2</sub>, OH< sup>−</sup> and dimethyl sulfoxide. Biochem Biophys Res Commun 102(1):531–537. https://doi.org/10.1016/0006-291X(81)91552-7

    Article  CAS  Google Scholar 

  15. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74. https://doi.org/10.2174/157015909787602823

    Article  CAS  Google Scholar 

  16. Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KA (2011) RAGE biology, atherosclerosis and diabetes. Clin Sci (London, England : 1979) 121(2):43–55. https://doi.org/10.1042/CS20100501

    Article  CAS  Google Scholar 

  17. Maltby S, Khazaie K, McNagny KM et al (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochimica et Biophysica Acta (BBA)—reviews on Cancer 1796:19–26

    Article  CAS  Google Scholar 

  18. Bae YS, Lee JH, Choi SH, et al. (2009) Macrophages generate reactive oxygen species in response to minimally oxidized LDL: TLR4- and Syk-dependent activation of Nox2. Circ Res 104(2):210–218. https://doi.org/10.1161/CIRCRESAHA.108.181040

    Article  CAS  Google Scholar 

  19. Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu ZG (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23(7):898–914. https://doi.org/10.1038/cr.2013.75

    Article  CAS  Google Scholar 

  20. Tarpey MM, Fridovich I (2001) Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and Peroxynitrite. Circ Res 89(3):224–236. https://doi.org/10.1161/hh1501.094365

    Article  CAS  Google Scholar 

  21. Thandavan K, Gandhi S, Sethuraman S, Rayappan JBB, Krishnan UM (2013) A novel nano-interfaced superoxide biosensor. Sensors Actuators B Chem 176:884–892. https://doi.org/10.1016/j.snb.2012.09.031

    Article  CAS  Google Scholar 

  22. Chesney A, R. Bryce M, S. Batsanov A, et al (1998) Selective electrochemical magnesium and calcium sensors based on non-macrocyclic nitrogen-containing ferrocene ligands. Chemical Communications 677–678. https://doi.org/10.1039/A800436F

  23. Madhurantakam S, Selvaraj S, Nesakumar N, et al (2014) Electrochemical enzymeless detection of superoxide employing naringin-copper decorated electrodes. Biosensors and Bioelectronics 59:134–139

  24. Yuasa M, Oyaizu K, Yamaguchi A, Ishikawa M, Eguchi K, Kobayashi T, Toyoda Y, Tsutsui S (2005) Electrochemical sensor for superoxide anion radical using polymeric iron porphyrin complexes containing axial 1-methylimidazole ligand as cytochrome c mimics. Polym Adv Technol 16(4):287–292. https://doi.org/10.1002/pat.590

    Article  CAS  Google Scholar 

  25. Fernández A, Vendrell M (2016) Smart fluorescent probes for imaging macrophage activity. Chem Soc Rev 45(5):1182–1196. https://doi.org/10.1039/C5CS00567A

    Article  Google Scholar 

  26. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40(9):4783–4804. https://doi.org/10.1039/c1cs15037e

    Article  CAS  Google Scholar 

  27. Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26(8):3450–3455. https://doi.org/10.1016/j.bios.2011.01.023

    Article  CAS  Google Scholar 

  28. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96(2-3):67–202. https://doi.org/10.1016/S0163-7258(02)00298-X

    Article  CAS  Google Scholar 

  29. Sreelatha S, Padma PR, Umadevi M (2009) Protective effects of Coriandrum sativum extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food Chem Toxicol 47(4):702–708. https://doi.org/10.1016/j.fct.2008.12.022

    Article  CAS  Google Scholar 

  30. Quine SD, Raghu PS (2005) Effects of (−)-epicatechin, a flavonoid on lipid peroxidation and antioxidants in streptozotocin-induced diabetic liver, kidney and heart. Pharmacol Rep 57(5):610–615

    CAS  Google Scholar 

  31. Emim JA, Oliveira AB, Lapa AJ (1994) Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J Pharm Pharmacol 46(2):118–122. https://doi.org/10.1111/j.2042-7158.1994.tb03753.x

    Article  CAS  Google Scholar 

  32. Matias I, Diniz LP, Buosi A et al (2017) Flavonoid hesperidin induces synapse formation and improves memory performance through the astrocytic TGF-β1. Front Aging Neurosci 9:1–14

    Article  Google Scholar 

  33. Selvaraj S, Krishnaswamy S, Devashya V et al (2013) Flavonoid–metal ion complexes: a novel class of therapeutic agents. Medicinal Research Reviews 2014 34(4):677–702

    Article  Google Scholar 

  34. Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM (2012) Membrane fluidization & eryptotic properties of hesperidin-copper complex. RSC Adv 2(29):11138–11146. https://doi.org/10.1039/c2ra20620j

    Article  CAS  Google Scholar 

  35. Yang Y, Zhou J, Wu L et al (2012) A superoxide anion electrochemical sensor based on the direct electrochemistry of superoxide dismutase assembled layer-by-layer at the L-cysteine modified gold electrode. Indian J Chemistry-Part A InorganicPhysical Theoretical and Analytical 51:1057

    Google Scholar 

  36. Chen J, Wollenberger U, Lisdat F, Ge B, Scheller FW (2000) Superoxide sensor based on hemin modified electrode. Sensors Actuators B Chem 70(1-3):115–120. https://doi.org/10.1016/S0925-4005(00)00575-X

    Article  CAS  Google Scholar 

  37. Robinson JM (2008) Reactive oxygen species in phagocytic leukocytes. Histochem Cell Biol 130(2):281–297. https://doi.org/10.1007/s00418-008-0461-4

    Article  CAS  Google Scholar 

  38. Jayanth Babu K, Sasya M, Nesakumar N et al (2017) Non-enzymatic detection of glucose in fruits using TiO2?Mn3O4 hybrid nano interface. Appl Nanosci 2017(7):309–316

    Article  Google Scholar 

  39. Beissenhirtz MK, Scheller FW, Lisdat F (2004) A superoxide sensor based on a multilayer Cytochrome c electrode. Anal Chem 76(16):4665–4671. https://doi.org/10.1021/ac049738f

    Article  CAS  Google Scholar 

  40. Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212. https://doi.org/10.1016/j.bios.2013.02.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sasya Madhurantakam thanks DST for providing INSPIRE fellowship (DST/IF/120812). The infrastructural support from SASTRA University is also gratefully acknowledged.

Funding

The authors acknowledge the funding from Department of Science and Technology, Government of India, under the Grants SR/SO/BB–35/2004, DST/TSG/PT/2008/28, and SR/FST/LSI-453/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Maheswari Krishnan.

Electronic supplementary material

ESM 1

(DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhurantakam, S., Selvaraj, S., Rayappan, J.B.B. et al. Exploring hesperidin-copper complex as an enzyme mimic for monitoring macrophage activity. J Solid State Electrochem 22, 1893–1899 (2018). https://doi.org/10.1007/s10008-018-3883-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3883-5

Keywords

Navigation