Skip to main content
Log in

Seawater zinc/polypyrrole-air cell possessing multifunctional charge-discharge characteristics

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An environmentally friendly cell using polypyrrole-air regenerative cathode and zinc as anode is investigated in the 3% sodium chloride solution. The cell can operate in different charge and discharge mode. Polypyrrole can be reoxidized (doped) with chloride anions either by using dissolved oxygen or by an external power supply, e.g., small photovoltaic cell. In that way, after discharge, capacity retaining can be achieved by using seawater as the electrolyte. During low discharge rate, the delicate balance between solid state diffusion-controlled dedoping and chemical oxidation of polypyrrole produced by hydrogen peroxide is achieved, generating stable voltage plateau. The cell is proposed to operate as a power supply for different sensor devices in two modes. In the low discharge mode (10–20 mA g−1), it can be used for data acquisition, and at the fast discharge mode (up to 2 A g−1) for collecting data transmission.

Charge-discharge curves for different curent densities of Zn|3.5% NaCl(aq)|PPy. Inset: Continuous discharge of the cell under external load of 1 kΩ and constant air supply, during 1-h discharge and 1-h reoxidation charge

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wilcock WSD, Kauffman PC (1997) Development of a seawater battery for deep-water applications. J Power Sources 66:71–75

    Article  CAS  Google Scholar 

  2. Shinohara M, Araki E, Mochizuki M, Kanazawaa T, Suyehiro K (2009) Practical application of a sea-water battery in deep-sea basin and its performance. J Power Sources 187:253–260

    Article  CAS  Google Scholar 

  3. Wang N, Wang R, Peng C, Feng Y, Chen B (2012) Effect of hot rolling and subsequent annealing on electrochemical discharge behavior of AP65 magnesium alloy as anode for seawater activated battery. Corros Sci 64:17–27

    Article  CAS  Google Scholar 

  4. Zhu Y, Gao P, Teng X, Hu H (2011) S as additive in Mg–Cu2O seawater batteries using Ni foam-supported electrode. Ionics 17:853–857

    Article  CAS  Google Scholar 

  5. Koontz RF, Lucero RD (1995) Magnesium water-activated batteries. In: Linden D (ed) Handbook of batteries, 3rd edn. McGraw-Hill, New York Chapter 17

    Google Scholar 

  6. Rao BML, Kobasz W, Hoge WH, Halmen RP, Halliop W, Fitzpatric NP (1992) Advances in aluminum-air salt water batteries. In: Brian E, Murphy OJ, Srinivasan S (eds) Electrochemistry in transition, Conway. Plenum Press, New York, pp 629–639

    Chapter  Google Scholar 

  7. Maa J, Wen J, Gao J, Li Q (2014) Performance of Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn as anode for Al-air battery in NaCl solutions. J Power Sources 253:419–423

    Article  Google Scholar 

  8. Wang N, Wang R, Peng C, Peng B, Feng Y, Hu C (2014) Discharge behavior of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery. Electrochim Acta 149:193–205

    Article  CAS  Google Scholar 

  9. Mori R (2015) Capacity recovery of aluminium–air battery by refilling salty water with cell structure modification. J Appl Electrochem 45:821–829

    Article  CAS  Google Scholar 

  10. Shen PK, Tseung ACC, Kuo C (1994) Development of an aluminum/sea water battery for subsea applications. J Power Sources 47:119–127

    Article  CAS  Google Scholar 

  11. Zhang T, Tao Z, Chen J (2014) Magnesium–air batteries: from principle to application. Mater Horiz 1:196–206

    Article  Google Scholar 

  12. Wittmaier D, Danner T, Wagner N, Friedrich KA (2014) Screening and further investigations on promising bi-functional catalysts for metal–air batteries with an aqueous alkaline electrolyte. J Appl Electrochem 44:73–85

    Article  CAS  Google Scholar 

  13. Ma Z, Pei P, Wang K, Wang X, Xu H, Liu Y, Peng G (2015) Degradation characteristics of air cathode in zinc air fuel cells. J Power Sources 274:56–64

    Article  CAS  Google Scholar 

  14. Song H-K, Palmore GTR (2006) Redox-active polypyrrole: toward polymer-based batteries. Adv Mater 18:1764–1768

    Article  CAS  Google Scholar 

  15. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9(10):3635–3639

    Article  Google Scholar 

  16. Pasta M, Wessells CD, Huggins RA, Yi C (2012) A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat Commun 3:1149

    Article  Google Scholar 

  17. Kong Y, Wang C, Yang Y, Too CO, Wallace GG (2012) A battery composed of a polypyrrole cathode and a magnesium alloy anode—toward a bioelectric battery. Synth Met 162:584–589

    Article  CAS  Google Scholar 

  18. Wang C, Zheng W, Yue Z, Too CO, Wallace GG (2011) Buckled, stretchable polypyrrole electrodes for battery applications. Adv Mater 23:3580–3584

    Article  CAS  Google Scholar 

  19. Li S, Sultana I, Guo Z, Wang C, Wallace GG, Liu H-K (2013) Polypyrrole as cathode materials for Zn-polymer battery with various biocompatible aqueous electrolytes. Electrochim Acta 95:212–217

    Article  CAS  Google Scholar 

  20. Li S, Ping Z, Wang GCY, Wallace GG, Liu HK (2013) Flexible cellulose based polypyrrole–multiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. J Mater Chem A 1:14300–14305

    Article  CAS  Google Scholar 

  21. Grgur BN, Gvozdenović MM, Stevanović J, Jugović BZ, Marinović VM (2008) Polypyrrole as possible electrode materials for the aqueous-based rechargeable zinc batteries. Electrochim Acta 53(14):4627–4632

    Article  CAS  Google Scholar 

  22. Audebert P (2010) Recent trends in polypyrrole electrochemistry, nanostructuration, and applications. In: Cosnier S, Karyakin A (eds) Electropolymerization: concepts, materials and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 77–91

    Chapter  Google Scholar 

  23. Saidman SB (2003) Influence of anion and pH on the electrochemical behavior of polypyrrole synthesised in alkaline media. Electrochim Acta 48:1719–1726

    Article  CAS  Google Scholar 

  24. Wallace GG, Tsekouras G, Wang C (2010) Inherently conducting polymers via electropolymerization for energy conversion and storage. In: Cosnier S, Karyakin A (eds) Electropolymerization: concepts, materials and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 215–240

    Chapter  Google Scholar 

  25. Wang GJ, Yang LC, Qu QT, Wang B, Wu YP, Holze R (2010) An aqueous rechargeable lithium battery based on doping and intercalation mechanisms. J Solid State Electrochem 14:865–869

    Article  CAS  Google Scholar 

  26. Kitani A, Kaya M, Sasaki K (1986) Performance study of aqueous polyaniline batteries. J Electrochem Soc 133(6):1069–1073

    Article  CAS  Google Scholar 

  27. Barsukov VZ, Khomenko VG, Katashinskii AS, Motronyuk TI (2004) Catalytic activity of polyaniline in the molecular oxygen reduction: its nature and mechanism. Russ J Electrochem 40(11):1170–1173

    Article  CAS  Google Scholar 

  28. Khomenko VG, Barsukov VZ, Katashinskii AS (2005) The catalytic activity of conducting polymers toward oxygen reduction. Electrochim Acta 50:1675–1683

    Article  CAS  Google Scholar 

  29. Barsukov VZ, Khomenko VG, Katashinskii AS, Motronyuk TI (2006) New concept for the metal-air batteries using composites: conducting polymers/extended graphite as catalyst. In: Barsukov IV et al (eds) New carbon based materials for electrochemical energy storage systems. Springer, Netherlands, pp 89–104

    Google Scholar 

  30. Khomenko VG, Lykhnytskyi KV, Barsukov VZ (2013) Oxygen reduction at the surface of polymer/carbon and polymer/carbon/spinel catalysts in aqueous solutions. Electrochim Acta 104:391–399

    Article  CAS  Google Scholar 

  31. Wu A, Venancio EC, MacDiarmid AG (2007) Polyaniline and polypyrrole oxygen reversible electrodes. Synth Met 157:303–310

    Article  CAS  Google Scholar 

  32. Grgur BN (2014) Metal|polypyrrole battery with the air regenerated positive electrode. J Power Sources 272:1053–1060

    Article  CAS  Google Scholar 

  33. Vernitskaya TV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties, and applications. Russ Chem Rev 66(5):443–457

    Article  Google Scholar 

  34. Carrasco PM, Cortazar M, Ochoteco E, Calahorra E, Pomposo JA (2007) Comparison of surface and bulk doping levels in chemical polypyrroles of low, medium and high conductivity. Surf Interface Anal 39:26–32

    Article  CAS  Google Scholar 

  35. Stanković R, Pavlović O, Vojnović M, Jovanović S (1994) The effect of preparation conditions on the properties of electrochemically synthesized thick films of polypyrrole. Eur Polym J 30(3):385–393

    Article  Google Scholar 

  36. Jia X, Wang C, Zhao C, Ge Y, Wallace GG (2016) Toward biodegradable Mg–air bioelectric batteries composed of silk fibroin–polypyrrole film. Adv Funct Mater 26:1454–1462

    Article  CAS  Google Scholar 

  37. Weidlich C, Mangold K-M, Jüttner K (2005) EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes. Electrochim Acta 50:1547–1552

    Article  CAS  Google Scholar 

  38. Mazeikiene R, Malinauskas A (2002) Kinetics of the electrochemical degradation of polypyrrole. Polym Degrad Stab 75:255–258

    Article  CAS  Google Scholar 

  39. Careem MA, Velmurugu Y, Skaarup S, West K (2006) A voltammetry study on the diffusion of counter ions in polypyrrole films. J Power Sources 159:210–214

    Article  CAS  Google Scholar 

  40. Alumaa A, Hallik A, Sammelselg V, Tamm J (2007) On the improvement of stability of polypyrrole films in aqueous solutions. Synth Met 157:485–491

    Article  CAS  Google Scholar 

  41. Trišović T, Gajić-Krstajić LJ, Krstajić N, Vojnović M (2001) On the kinetics of the hydrogen evolution reaction on zinc in sulfate solutions. J Serb Chem Soc 66(11–12):811–823

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, under the research project “Electrochemical synthesis and characterization of nanostructured functional materials for applications in new technologies” No. ON172046. Ali H. Al-Eggiely and Alsadek A. Alguail are grateful to the Libyan Ministry of Higher Education and Scientific Research for the material supports during PhD study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branimir N. Grgur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Eggiely, A.H., Alguail, A.A., Gvozdenović, M.M. et al. Seawater zinc/polypyrrole-air cell possessing multifunctional charge-discharge characteristics. J Solid State Electrochem 21, 2769–2777 (2017). https://doi.org/10.1007/s10008-017-3597-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3597-0

Keywords

Navigation