Skip to main content
Log in

Simultaneous detection of hydroquinone and catechol on electrochemical-activated glassy carbon electrode by simple anodic and cathodic polarization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, we report a simple method of simultaneous detection of hydroquinone (HQ) and catechol (CC) by cyclic voltammetry (CV) using activated glassy carbon electrodes (GCE). It was found that the two isomers can be completely separated by CV method on cathode polarized GCE (PGCE) after its anodic oxidation. This facile processing method solves the difficulty of electrode surface regenerating which disturb most modified electrodes for the complex composition ease of being contaminated by the analytes in measurement. Morphology and composition of the PGCE were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectra, and X-ray photoelectron spectroscopy. In addition, the reaction kinetic of HQ and CC reaction on the PGCE was investigated. It was found that the reaction kinetics of HQ and CC is a surface adsorption-controlled process at low concentration and a diffusion-controlled process at high concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hong Z, Zhou L, Li J, Tang J (2013) A sensor based on graphitic mesoporous carbon/ionic liquids composite film for simultaneous determination of hydroquinone and catechol. Electrochim Acta 109:671–677

    Article  CAS  Google Scholar 

  2. Buleandra M, Rabinca AA, Mihailciuc C, Balan A, Nichita C, Stamatin I, Ciucu AA (2014) Screen-printed prussian blue modified electrode for simultaneous detection of hydroquinone and catechol. Sensors Actuators B Chem 203:824–832

  3. Marrubini G, Calleri E, Coccini T, Castoldi AF, Manzo L (2005) Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection. Chromatographia 62:25–31

  4. Wittig J, Wittemer S, Veit M (2001) Validated method for the determination of hydroquinone in human urine by high-performance liquid chromatography-coulometric-array detection. J Chromatogr B 761:125–132

  5. Li J, Liu CY, Cheng C (2011) Electrochemical detection of hydroquinone by graphene and Pt-graphene hybrid material synthesized through a microwave-assisted chemical reduction process. Electrochim Acta 56:2712–2716

    Article  CAS  Google Scholar 

  6. Tehrani RMA, Ghadimib H, Ghani SA (2013) Electrochemical studies of two diphenols isomers at graphene nanosheet-poly(4-vinyl pyridine) composite modified electrode. Sensors Actuators B Chem 177:612–619

    Article  CAS  Google Scholar 

  7. Zhang Y, Sun R, Luo B, Wang L (2015) Boron-doped graphene as high-performance electrocatalyst for the simultaneously electrochemical determination of hydroquinone and catechol. Electrochim Acta 156:228–234

    Article  CAS  Google Scholar 

  8. Wang X, Wu M, Li H, Wang Q, He P, Fang Y (2014) Simultaneous electrochemical determination of hydroquinone and catechol based on three-dimensional graphene/MWCNTs/BMIMPF6 nanocomposite modified electrode. Sensors Actuators B Chem 192:452–458

    Article  CAS  Google Scholar 

  9. Huang YH, Chen JH, Sun X, Su ZB, Xing HT, Hu SR, Weng W, Guo HX, Wu WB, He YS (2015) One-pot hydrothermal synthesis carbon nanocages-reduced graphene oxide composites for simultaneous electrochemical detection of catechol and hydroquinone. Sensors Actuators B Chem 212:165–173

    Article  CAS  Google Scholar 

  10. Erogul S, Bas SZ, Ozmen M, Yildiz S (2015) A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta 186:302–313

    Article  CAS  Google Scholar 

  11. Liu H, Chen Y, Liu Y, Yang Z (2013) A sensitive sensor for determination of L-tryptophan based on gold nanoparticles/poly(alizarin red S)-modified glassy carbon electrode. J Solid State Electrochem 17:2623–2631

    Article  CAS  Google Scholar 

  12. Vilian ATE, Chen SM, Huang LH, Ali MA, Al-Hemaid FMA (2014) Simultaneous determination of catechol and hydroquinone using a Pt/ZrO2-RGO/GCE composite modified glassy carbon electrode. Electrochim Acta 125:503–509

  13. Si W, Lei W, Han Z, Hao Q, Zhang Y, Xia M (2014) Selective sensing of catechol and hydroquinone based on poly(3,4-ethylenedioxythiophene)/nitrogen-doped graphene composites. Sensors Actuators B Chem 199:154–160

  14. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2015) A promising electrochemical sensing platform based on ternary composite of polyaniline-Fe2O3-reduced graphene oxide for sensitive hydroquinone determination. Chem Eng J 259:594–602

    Article  CAS  Google Scholar 

  15. Shahrokhian S, Zare-Mehrjardi HR, Khajehsharifi H (2009) Modification of carbon paste with congo red supported on multi-walled carbon nanotube for voltammetric determination of uric acid in the presence of ascorbic acid. J Solid State Electrochem 13:1567–1575

  16. Liu X, Li Y, Liu X, Zeng X, Kong B, Luo S, Wei W (2012) Simple sensor for simultaneous determination of dihydroxybenzene isomers. J Solid State Electrochem 16:883–889

  17. Wang L, Zhang Y, Du Y, Lu D, Zhang Y, Wang C (2012) Simultaneous determination of catechol and hydroquinone based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode. J Solid State Electrochem 16:1323–1331

  18. Dong S, Zhang P, Yang Z, Huang T (2012) Simultaneous determination of catechol and hydroquinone by carbon paste electrode modified with hydrophobic ionic liquid-functionalized SBA-15. J Solid State Electrochem 16:3861–3868

  19. Li SJ, Xing Y, Deng DH, Shi MM, Guan PP (2015) A comparative study of different types of reduced graphene oxides as electrochemical sensing platforms for hydroquinone and catechol. J Solid State Electrochem 19:861–870

  20. Zhou S, Wu H, Wu Y, Shi H, Feng X, Huang H, Li J, Song W (2013) Large surface area carbon material with ordered mesopores for highly selective determination of l-tyrosine in the presence of l-cysteine. Electrochim Acta 112:90–94

  21. Walcarius A (2012) Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. Trends Anal Chem 38:79–97

    Article  CAS  Google Scholar 

  22. Hasoň S, Vetterl V, Jelen F, Fojta M (2009) Improved sensitivity and selectivity of uric acid voltammetric sensing with mechanically grinded carbon/graphite electrodes. Electrochim Acta 54:1864–1873

    Article  Google Scholar 

  23. Zittel HE, Miller FJ (1965) A glassy-carbon electrode for voltammetry. Anal Chem 37:200–203

  24. Stutts KJ, Kovach PM, Kuhr WG, Wightmen RM (1983) Enhanced electrochemical reversibility at heat-treated glassy carbon electrodes. Anal Chem 55:1632–1634

  25. Gu H, Xu Y, Peng W, Li G, Chen HY (2004) A novel method for separating the anodic voltammetric peaks of dopamine and ascorbic acid. Microchim Acta 146:223–227

  26. Kuo TC, McCreery RL (1999) Surface chemistry and electron-transfer kinetics of hydrogen-modified glassy carbon electrodes. Anal Chem 71:1553–1560

  27. Poon M, McCreery RL, Engstrom R (1988) Laser activation of carbon electrodes. Relationship between laser-induced surface effects and electron transfer activation. Anal Chem 60:1725–1730

  28. DeClements R, Swain GM, Dallas T, Holtz MW, Herrick RD II, Stickney JL (1996) Electrochemical and surface structural characterization of hydrogen plasma treated glassy carbon electrodes. Langmuir 12:6578–6586

  29. Wang J, Lin MS (1988) In situ electrochemical renewal of glassy carbon electrodes. Anal Chem 60:499–502

  30. Dai HP, Shiu KK (1996) Voltammetric studies of electrochemical pretreatment of rotating-disc glassy carbon electrodes in phosphate buffer. J Electroanal Chem 419:7–14

  31. Ilangovan G, Chandrasekara Pillai K (1999) Mechanism of activation of glassy carbon electrodes by cathodic pretreatment. J Solid State Electrochem 3:357–360

    Article  CAS  Google Scholar 

  32. Huang D, Cheng Y, Xu H, Zhang H, Sheng L, Xu H, Liu Z, Wu H, Fan S (2015) The determination of uric acid in human body fluid samples using glassy carbon electrode activated by a simple electrochemical method. J Solid State Electrochem 19:435–443

    Article  CAS  Google Scholar 

  33. Ahammad AJS, Sarker S, Rahman MA, Lee JJ (2010) Simultaneous determination of hydroquinone and catechol at an activated glassy carbon electrode. Electroanalysis 22:694–700

  34. Shi K, Shiu KK (2004) Adsorption of some quinone derivatives at electrochemically activated glassy carbon electrodes. J Electroanal Chem 574:63–70

  35. Yang Y, Lin ZG (1995) In situ FTIR characterization of the electrooxidation of glassy carbon electrodes. J Appl Electrochem 25:259–266

  36. Du W, Zhou B, Jiang X (2014) Fast electron transfer kinetics on electrodes composed of graphene oxide ‘patched’ with direct exfoliated pristine graphene nanosheets. Chem Phys Lett 595-596:1–5

  37. Ranganathan S, Kuo TC, McCreery RL (1999) Facile preparation of active glassy carbon electrodes with activated carbon and organic solvents. Anal Chem 71:3574–3580

  38. Li F, Song J, Gao D, Zhang Q, Han D, Niu L (2009) Simple and rapid voltammetric determination of morphine at electrochemically pretreated glassy carbon electrodes. Talanta 79:845–850

  39. Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. Appl Mater Interfaces 5:425–432

  40. Du J, Ma L, Shan D, Fan Y, Zhang L, Wang L, Lu X (2014) An electrochemical sensor based on the three-dimensional functionalized graphene for simultaneous determination of hydroquinone and catechol. J Electroanal Chem 722-723:38–45

  41. Fu L, Lai G, Jia B, Yu A (2015) Preparation and electrocatalytic properties of polydopamine functionalized reduced graphene oxide-silver nanocomposites. Electrocatalysis 6:72–76

  42. Jian X, Liu X, Yang HM, Guo MM, Song XL, Dai HY, Liang ZH (2016) Graphene quantum dots modified glassy carbon electrode via electrostatic self-assembly strategy and its application. Electrochim Acta 190:455–462

  43. Uhrovčík J (2014) Strategy for determination of LOD and LOQ values – Some basic aspects. Talanta 119:178–180

  44. Yuan X, Yuan D, Zeng F, Zou W, Tzorbatzoglou F, Tsiakaras P, Wang Y (2013) Preparation of graphitic mesoporous carbon for the simultaneous detection of hydroquinone and catechol. Appl Catal B Environ 129:367–374

  45. Gan T, Sun J, Huang K, Song L, Li Y (2013) A graphene oxide-mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol. Sensors Actuators B Chem 177:412–418

  46. Meng Z, Zhang H, Zheng J (2015) An electrochemical sensor based on titanium oxide-carbon nanotubes nanocomposite for simultaneous determination of hydroquinone and catechol. Res Chem Intermed 41:3135–3146

  47. Nematollahi D, Ariapad A, Rafiee M (2007) Electrochemical nitration of catechols: Kinetic study by digital simulation of cyclic voltammograms. J Electroanal Chem 602:37–42

  48. Song D, Xia J, Zhang F, Bi S, Xiang W, Wang Z, Xia L, Xia Y, Li Y, Xia L (2015) Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors Actuators B Chem 206:111–118

  49. Zhang Y, Zheng JB (2007) Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochim Acta 52:7210–7216

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No: 21405096) and University Student Innovation Training Project of China (No: 201510445111; 201510445122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaixiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, S., Zhang, F. et al. Simultaneous detection of hydroquinone and catechol on electrochemical-activated glassy carbon electrode by simple anodic and cathodic polarization. J Solid State Electrochem 21, 735–745 (2017). https://doi.org/10.1007/s10008-016-3426-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3426-x

Keywords

Navigation