Skip to main content
Log in

All-inorganic solid-state electrochromic devices: a review

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochromic devices (ECDs) are currently attracting much interest in academic and industry for both research and their commercial applications because of their controllable transmission, absorption, and/or reflectance. This paper reviews the progress that has taken place from 1969 until the year 2015 with regard to all-solid-state inorganic ECD fabrication. The main aim of this review article is to provide an easy entrance to literature of all-inorganic solid-state ECD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goldner RB, Arntz FO, Berera G, Haas TE, Wei G, Wong KK, Yu PC (1992) A monolithic thin-film electrochromic window. Solid State Ionics 53-56:617–627

    Article  CAS  Google Scholar 

  2. Granqvist CG (1993) Transparent conductive electrodes for electrochromic devices: a review. Appl Phys A Mater Sci Process 57:19–24

    Article  Google Scholar 

  3. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35–S44

    Article  CAS  Google Scholar 

  4. Barbosa PC, Silva MM, Smith MJ, Gonçalves A, Fortunato E (2007) Studies of solid-state electrochromic devices based on PEO/siliceous hybrids doped with lithium perchlorate. Electrochim Acta 52:2938–2943

    Article  CAS  Google Scholar 

  5. Kim S, Lee JL (2012) Design of dielectric/metal/dielectric transparent electrodes for flexible electronics. J Photon Energy 2(1):021215–021237

    Article  Google Scholar 

  6. Girtan M (2012) Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol Energy Mater Sol Cells 100:153–161

    Article  CAS  Google Scholar 

  7. Zhao L, Xu Y, Qiu T (2009) Polyaniline electrochromic devices with transparent graphene electrodes. Electrochim Acta 55:491–497

    Article  CAS  Google Scholar 

  8. Patel KJ, Desai MS, Panchal CJ, Deota HN, Trivedi UB (2013) All-solid-thin film electrochromic devices consisting of layers ITO / NiO / ZrO2 / WO3 / ITO. Journal of Nano-and electronic Physics 5:02023–02026

    Google Scholar 

  9. Larsson AL, Niklasson GA (2004) Infrared emittance modulation of all-thin-film electrochromic devices. Mater Lett 58:2517–2520

    Article  CAS  Google Scholar 

  10. Hai-Gang Y, Cong W, Kai-Gui Z, Xun-Gang D, Huai-Yi W, Yi C, Tian-Min W (2008) An all-thin-film electrochromic device composed of MoO3—LiBSO—NiOx, multilayer structure. Chinese Phys Lett 25:740–742

    Article  Google Scholar 

  11. Yang H, Wang C, Diao X, Wang H, Wang T, Zhu K (2008) A new all-thin-film electrochromic device using LiBSO as the ion conducting layer. J Phys D Appl Phys 41:115301

    Article  Google Scholar 

  12. Chen J, Zhu Z, Zhou Y, Wang R, Yan Y (1995) All solid state electrochromic device: WO3/LiAlF4:Li/VO2. Proc SPIE: Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIV 2531:161–167

    Article  CAS  Google Scholar 

  13. Wei G, Haas TE, Goldner RB (1992) Thin films of lithium cobalt oxide. Solid State Ionics 58:115–122

    Article  CAS  Google Scholar 

  14. Kuwabara K, Ohno M, Sugiyama K (1991) All-solid-state electrochromic device. 2. Characterization of transition-metal oxide thin films for counter electrode. Solid State Ionics 44:319–323

    Article  CAS  Google Scholar 

  15. Baudry P, Rodrigues ACM, Aegerter MA, Bulhoes LO (1990) Dip-coated TiO2-CeO2 films as transparent counter-electrode for transmissive electrochromic devices. J Non-Cryst Solids 121:319–322

    Article  CAS  Google Scholar 

  16. Zhang Q, Wu G, Zhou B, Shen J, Wang J, Wu Z, Ji W (2001) Electrochromic properties of sol-gel deposited V2O5 and TiO2-V2O5 binary thin films. J Mater Sci Technol 17:417–420

    CAS  Google Scholar 

  17. Li Z, Ye L, Zhang M, Shun C (2009) Optical and electrochemical properties of the protonic state electrochromic device: NiOx/Ta2O5/WO3-x. Proc of SPIE: 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies 7282:728217

    Article  Google Scholar 

  18. Jaing C-C, Tang C-J, Chan C-C, Lee K-H, Kuo C-C, Chen H-C, Lee C-C (2014) Optical constants of electrochromic films and contrast ratio of reflective electrochromic devices. Appl Opt 53:A154–A158

    Article  CAS  Google Scholar 

  19. Tepehan FZ, Ghodsi FE, Ozer N, Tepehan GG (1999) Optical properties of sol–gel dip-coated Ta2O5 films for electrochromic applications. Sol Energy Mater Sol Cells 59:265–275

    Article  CAS  Google Scholar 

  20. Jonsson AK, Larsson AL, Niklasson GA, Stromme M (2005) H+ conduction in solid-state electrochromic devices analyzed by transient current measurements. J Electrochem Soc 152:A377–A379

    Article  CAS  Google Scholar 

  21. Zhang JG, Benson DK, Tracy CE, Deb SK, Bechinger C (1996) Electrochromic devices using a Li2O-CeO2-SiO2 ion conductor. Electrochemical Society Proceedings 95-22:125–136

    CAS  Google Scholar 

  22. Ashirt PV, Girouard FE, Truong VV (1996) Fabrication and testing of an all solid state system for smart window application. Solid Stale Ionics 89:65–73

    Article  Google Scholar 

  23. Goldner RB, Arntz FO, Haas TE (1994) d-Electrons and two active thin film devices for achieving a solar energy economy. Solar Energy Mater Solar Cells 32:421–428

    Article  CAS  Google Scholar 

  24. Cogan SF, Rauh RD, Klein JD, Nguyen NM, Jones RB, Plante TD (1997) Variable transmittance coatings using electrochromic lithium chromate and amorphous WO3 thin films. J Electrochem Soc 144:956–960

    Article  CAS  Google Scholar 

  25. Deb SK (1969) A novel Electrophotographic system. Appl Opt 8(S1):192–195

    Article  Google Scholar 

  26. Deb, SK (1976) Variable light transmission device. US Patent 3829196

  27. Krause D, Paquet V (1977) Electrochromic coatings for reflectivity control. Electro-Optical Systems Design 9:54–55

    CAS  Google Scholar 

  28. Shimizu I, Shizukuishi M, Inoue E (1979) Solid-state electrochromic device consisting of amorphous WO3 and Cr2O3. J Appl Phys 50:4027–4032

    Article  CAS  Google Scholar 

  29. Deneuville A, Gerard P, Billat R (1980) Principles and operation of an all solid state electrochromic display based on a-WO3. Thin Solid Films 70:203–223

    Article  CAS  Google Scholar 

  30. Kuwabara K, Yamada KM (1993) Early cycling processes in a variable transparency ECD utilizing antimony hydrogen phosphate thin film electrolyte. Solid State Ionics 59:25–31

    Article  CAS  Google Scholar 

  31. Vaivars G, Kleperis J, Lusis A (1993) Antimonic acid hydrate xerogels as proton electrolytes. Solid State Ionics 61:317–321

    Article  CAS  Google Scholar 

  32. Macedo MA, Aegerter MA (1994) Sol-gel electrochromic device. J Sol-Gel Sci Technol 2:667–671

    Article  CAS  Google Scholar 

  33. Lusis A (1997) Functional models of electrochromic devices: cycling capacity and degradation. Proc SPIE, Optical Organic and Semiconductor Inorganic Materials 2968:167–173

    Article  CAS  Google Scholar 

  34. Shen GL, Li B, Fu BX, Wang L (1997) All inorganic oxide solid state thin film electrochromic devices with variable reflectance. Proc SPIE, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV 3138:–49

  35. Mathew JGH, Sapers SP, Cumbo MJ, O’Brien NA, Sargent RB, Raksha VP, Lahaderne RB, Hichwa BP (1997) Large area electrochromics for architectural applications. J Non-Cryst Solids 218:342–346

    Article  CAS  Google Scholar 

  36. Cantao MP, Lourenco A, Gorenstein A, CoHrdoba de Torresi SI, Torresi RM (1994) Inorganic oxide solid state electrochromic devices. Mater Sci Eng B 26:157–161

    Article  CAS  Google Scholar 

  37. Azens A, Kullman L, Vaivars G, Nordborg CG, Granqvist CG (1998) Sputter-deposited nickel oxide for electrochromic applications. Solid State Ionics 113-115:449–456

    Article  CAS  Google Scholar 

  38. Nagai J, McMeeking GD, Saitoh Y (1999) Durability of electrochromic glazing. Solar Energy Mater Solar Cells 56:309–319

    Article  CAS  Google Scholar 

  39. O’Brien NA, Gordon J, Mathew H, Hichwa BP (1999) Electrochromic coatings—applications and manufacturing issues. Thin Solid Films 345:312–318

    Article  Google Scholar 

  40. Larsson A-L, Niklasson GA (2004) Optical properties of electrochromic all-solid-state. Solar Energy Mater Solar Cells 84:351–360

    Article  CAS  Google Scholar 

  41. Yoshimura H, Koshida N (2006) Fast electrochromic effect obtained from solid-state inorganic thin-film configuration with a carrier accumulation structure. Appl Phys Lett 88:093509

    Article  Google Scholar 

  42. Subrahmanyam A, Suresh Kumar C, Muthu Karuppasamy K (2007) A note on fast protonic solid state electrochromic device: NiOx/Ta2O5/WO3−x. Solar Energy Mater Solar Cells 91:62–66

    Article  CAS  Google Scholar 

  43. Tajima K, Yamada Y, Bao S, Okada M, Yoshimura K (2007) Aluminum buffer layer for high durability of all-solid-state switchable mirror based on magnesium-nickel thin film. Appl Phys Lett 91:051908

    Article  Google Scholar 

  44. Tajima K, Yamada Y, Bao S, Okada M, Yoshimura K (2008) All-solid-state switchable mirror on flexible sheet. Surf Coat Technol 202:5633–5636

    Article  CAS  Google Scholar 

  45. Tajima K, Yamada Y, Bao S, Okada M, Yoshimura K (2008) Near colorless all-solid-state switchable mirror based on magnesium-titanium thin film. J Appl Phys 103:013512

    Article  Google Scholar 

  46. Tajima K, Hotta H, Yamada Y, Okada M, Yoshimura K (2011) Electrochromic switchable mirror foil with tantalum oxide thin film prepared by reactive DC magnetron sputtering in hydrogen-containing gas. Surface & Coatings Technology 205:3956–3960

    Article  CAS  Google Scholar 

  47. Niwa T, Takai O (2010) All-solid-state reflectance-type electrochromic devices using iridium tin oxide film as counter electrode. Thin Solid Films 518:5340–5344

    Article  CAS  Google Scholar 

  48. Niwa T, Takai O (2010) Optical and electrochemical properties of all-solid-state transmittance-type electrochromic devices. Thin Solid Films 518:1722–1727

    Article  CAS  Google Scholar 

  49. Patel KJ, Desai MS, Panchal CJ (2015) Studies of ZrO2 electrolyte thin-film thickness on the all-solid thin-film electrochromic devices. J Solid State Electrochem 19:275–279

    Article  CAS  Google Scholar 

  50. Goldner RB, Haas TE, Seward G, Wong KK, Norton P, Foley PG, Berera G, Schulz WG, Chapman R (1988) Thin film solid state ionic materials for electrochromic smart window™ glass. Solid State lonics 28-30:1715–1721

    Article  Google Scholar 

  51. Ashirt PV, Benaissa K, Bader G, Girouard FE, Truong VV (1993) Lithiation studies on some transition metal oxides for an all-solid thin film electrochromic system. Solid State Ionics 59:47–57

    Article  Google Scholar 

  52. Hu X, Chen X, Li Z (1997) All-solid-state electrochromic device with NiO/WO3 complementary structure. Proc SPIE 3138, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV 3138:58

    Article  CAS  Google Scholar 

  53. Daneo A, Macrelli G, Polato P, Poli E (1999) Photometric characterization of an all solid state inorganic electrochromic large area device. Solar Energy Mater Solar Cells 56:237–248

    Article  CAS  Google Scholar 

  54. Sbar N, Badding M, Budziak R, Cortez K, Laby L, Michalski L, Ngo T, Schulz S, Urbanik K (1999) Progress toward durable, cost effective electrochromic window glazings. Solar Energy Mater Solar Cells 56:321–341

    Article  CAS  Google Scholar 

  55. Franke EB, Trimble CL, Schubert M, Woollam JA, Hale JS (2000) All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region. Appl Phys Lett 77:930–932

    Article  CAS  Google Scholar 

  56. Franke EB, Trimble CL, Hale JS, Schubert M, Woollam JA (2000) Infrared switching electrochromic devices based on tungsten oxide. J Appl Phys 88:5777–5784

    Article  CAS  Google Scholar 

  57. Xuping Z, Haokang Z, Qing L, Luo H (2000) An all-solid-state inorganic electrochromic display of WO3 and NiO films with LiNbO3 ion conductor. Electron Device Letters IEEE 21:215–217

    Article  Google Scholar 

  58. Yoo SJ, Lim JW, Sung YE (2006) Improved electrochromic devices with an inorganic solid electrolyte protective layer. Sol Energ Mat Sol Cells 90:477–484

    Article  CAS  Google Scholar 

  59. Mitsugia F, Nakamurab A, Kodamab Y, Ohkubob T, Nomoto Y (2007) Preparation of inorganic solid state thin film for electrochromic application. Thin Solid Films 515:4159–4165

    Article  Google Scholar 

  60. Yang H-G, Wang C, Zhu K-G, Xun-Gang D, Wang H-Y, Yi C, Wang T-M (2008) An all-thin-film electrochromic device composed of MoO3-LiBSO-NiOx multilayer structure. Chinese Phys Lett 25:740–742

    Article  CAS  Google Scholar 

  61. Wang SC, Liu KY, Huang JL (2011) Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device. Thin Solid Films 520:1454–1459

    Article  CAS  Google Scholar 

  62. Song X, Dong G, Gao F, Xiao Y, Liu Q, Diao X (2015) Properties of NiOx and its influence upon all-thin-film ITO/NiOx/LiTaO3/WO3/ITO electrochromic devices prepared by magnetron sputtering. Vacuum 111:48–54

    Article  CAS  Google Scholar 

  63. Liu Q, Dong G, Xiao Y, Gao F, Wang M, Wang Q, Wang S, Zuo H, Diao X (2015) An all-thin-film inorganic electrochromic device monolithically fabricated on flexible PET/ITO substrate by magnetron sputtering. Mater Lett 142:232–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Panchal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, K.J., Bhatt, G.G., Ray, J.R. et al. All-inorganic solid-state electrochromic devices: a review. J Solid State Electrochem 21, 337–347 (2017). https://doi.org/10.1007/s10008-016-3408-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3408-z

Keywords

Navigation