Skip to main content
Log in

Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report the studies on composite gel polymer electrolytes (GPEs) comprising 0.5 M solution of sodium trifluoromethane sulfonate (Na-triflate or NaTf) in ionic liquid 1-ethyl 3-methyl imidazolium trifluoromethane sulfonate (EMITf) entrapped in poly (vinylidinefluoride-co-hexafluoropropylene) (PVdF-HFP) dispersed with passive filler Al2O3 and active filler NaAlO2 particles. The free-standing films of the composite GPEs, prepared from solution-cast method, offer optimum ionic conductivity at room temperature (6.3–6.8 × 10−3 S cm−1 and 5.5–6.5 × 10−3 S cm−1 for Al2O3- and NaAlO2-dispersed GPEs, respectively), with sufficient electrochemical stability and excellent thermal stability up to 340 °C. As observed from XRD and SEM, the composites are of predominantly amorphous and porous character, which support the high ionic conduction. The sodium ion transport number has been found to be ∼0.27 for Al2O3-dispersed GPE and 0.42 for NaAlO2-dispersed GPE, which indicates the predominant role of passive and active fillers, Al2O3 and NaAlO2, respectively. The dispersion of NaAlO2 enhances the sodium ion conductivity in composite GPE substantially. The overall ionic conductivity is same as in the case of Al2O3 dispersion. The performance characteristics of GPE, particularly, dispersed with active filler NaAlO2 show its potential applicability as electrolyte/separator in sodium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scrosati B (2011) History of lithium batteries. J Solid State Electrochem 15:1623–1630

    Article  CAS  Google Scholar 

  2. Dell R (2000) Batteries fifty years of materials development. Solid State Ion 134:139–158

    Article  CAS  Google Scholar 

  3. Xu K (2004) Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem Rev 104:4303–4418

    Article  CAS  Google Scholar 

  4. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  5. Patil A, Patil V, Shin W, Choi JW, Paik DS, Yoon SJ (2008) Issue and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43:1913–1942

    Article  CAS  Google Scholar 

  6. Palomares V, Serras P, Villaluenga I, Hueso KB, González JC, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  7. Ponrouch A, Dedryvère R, Monti D, Demet AE, Ateba JM, Croguennec L, Masquelier C, Johansson P, Palacín MR (2013) Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ Sci 6:2361–2369

    Article  CAS  Google Scholar 

  8. Amalraj SF, Aurbach D (2011) The use of in situ techniques in R&D of Li and Mg rechargeable batteries. J Solid State Electrochem 15:877–890

    Article  CAS  Google Scholar 

  9. Jung S, Kim D, Lee S (2009) Fillers for Solid-State Polymer Electrolytes: Highlight. Bull Korean Chem 30:2355–2361

    Article  CAS  Google Scholar 

  10. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  Google Scholar 

  11. Doeff MM, Ma Y, Visco SJ (1993) Jonghe LC De (1993) Electrochemical Insertion of Sodium into Carbon. J Electrochem Soc 140:L169–L170

    Article  CAS  Google Scholar 

  12. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001 (18pp)

    Article  Google Scholar 

  13. Sekhon SS (2003) Conductivity behaviour of polymer gel electrolytes: Role of polymer. Bull Mater Sci 26:321–328

    Article  CAS  Google Scholar 

  14. Singh MK, Kumar Y, Hashmi SA (2013) “Bucky gel” of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors. Nanotechnology 24:465704

    Article  Google Scholar 

  15. Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ion 181:416–423

    Article  CAS  Google Scholar 

  16. Sellam HSA (2013) High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. ACS Appl Mater Interfaces 5:3875–3883

    Article  CAS  Google Scholar 

  17. Mishra K, Hashmi SA, Rai DK (2014) Protic ionic liquid-based gel polymer electrolyte : structural and ion transport studies and its application in proton battery. J Solid State Electrochem 18:2255–2266

    Article  CAS  Google Scholar 

  18. Ohno H (2005) Electochemical Aspects of Ionic Liquids. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  19. Agrawal R, Sahu D, Mahipal Y, Ashrafi R (2013) Investigations on ion transport properties of hot-press cast magnesium ion conducting Nano-Composite Polymer Electrolyte (NCPE) films: Effect of filler particle dispersal on room temperature conductivity. Mater Chem Phys 139:410–415

    Article  CAS  Google Scholar 

  20. Isa KBM, Othman L, Zainol NH, Samin SM, Chong CW, Osman Z, Arof AKM (2014) Studies on Sodium Ion Conducting Gel Polymer Electrolytes. Key Eng Mat 595:786–792

    Google Scholar 

  21. Ma Y, Doeff MM, Visco SJ, De Jonghe LC (1993) Rechargeable Na / NaxCoO2 and Na15Pb4 / NaxCoO2 Polymer Electrolyte Cells. J Electrochem Soc 140:2726–2733

    Article  CAS  Google Scholar 

  22. Kumar D, Suleman M, Hashmi SA (2011) Studies on poly ( vinylidene fl uoride-co-hexa fl uoropropylene ) based gel electrolyte nanocomposite for sodium – sulfur batteries. Solid State Ion 202:45–53

    Article  CAS  Google Scholar 

  23. Brazel CS, Rogers RD (2005) Ionic Liquids in Polymer Systems Solvents, Additivies, and Novel Applications. American Chemical Soc, Washington

    Book  Google Scholar 

  24. Ahmad S (2009) Polymer electrolytes: characteristics and peculiarities. Ionics 15:309–321

    Article  CAS  Google Scholar 

  25. Singhal RG, Capracotta MD, Martin JD, Khan SA, Fedkiw PS (2004) Transport properties of hectorite based nanocomposite single ion conductors. J Power Sources 128:247–255

    Article  CAS  Google Scholar 

  26. Walls HJ, Riley MW, Singhal RR, Spontak RJ, Fedkiw PS, Khan SA (2003) Nanocomposite Electrolytes with Fumed Silica and Hectorite Clay Networks: Passive versus Active Fillers. Adv Funct Mater 13:710–717

    Article  CAS  Google Scholar 

  27. Hashmi SA, Chandra S (1995) Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6. Mater Sci Eng B 34:18–26

    Article  Google Scholar 

  28. Watanabe M, Nagano S, Sanui K, Ogata N (1988) Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurement. Solid State Ion 30:911–917

    Article  Google Scholar 

  29. Egashira M, Todo H, Yoshimoto N, Morita M (2008) Lithium ion conduction in ionic liquid-based gel polymer electrolyte. J Power Sources 178:729–735

    Article  CAS  Google Scholar 

  30. Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634

    Article  CAS  Google Scholar 

  31. Angell CA (1997) Why C1 = 16–17 in the WLF equation is physical—and the fragility of polymers. Polymer 38:6261–6266

    Article  CAS  Google Scholar 

  32. Kaduk JA, Pei S (1995) The crystal structure of hydrated sodium aluminate, NaAlO2 · 5/4H2o, and its dehydration product. J Solid State Chem 115:126–139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports received from M/S Renault Nissan Technology and Business Centre India Pvt. Ltd. (through a project entitled “Development of Thermally and Electrochemically Stable Gel Polymer Electrolyte for Sodium Ion Batteries”) and the University of Delhi (11-17 Research Fund) are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hashmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmi, S.A., Bhat, M.Y., Singh, M.K. et al. Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J Solid State Electrochem 20, 2817–2826 (2016). https://doi.org/10.1007/s10008-016-3284-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3284-6

Keywords

Navigation