Skip to main content

Advertisement

Log in

Synthesis and charge-discharge performance of Li5SiN3 as a cathode material of lithium secondary batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li5SiN3 crystals are synthesized by direct reaction between Li3N and Si3N4 with the molar ratio Li3N/Si3N4 of 10:1. Reaction is performed at 1073 K for 1 h under a nitrogen atmosphere of 700 Torr. The lattice constant determined by the X-ray powder diffraction method is 4.718 Å. Four broad Raman peaks are observed at 196, 286, 580, and 750 cm−1. By analogy with LiMgN, the broad peak at 580 cm−1 with a half width of 140 cm−1 is attributed to homogenously random distribution of Li and Si atoms. The band gap of Li5SiN3 is found to be a direct gap of about 2.5 eV by optical absorption and photoacoustic spectroscopy methods. Comparison with the conventional cathode materials for lithium ion batteries, this gap value is close to d-d transition energy of Mn in LiMn2O4 (1.63 eV or 2.00 eV) and that of Co in LiCoO2 (2.1 eV), suggesting that Li5SiN3 is a possible cathode material. The 5 × 5 mm2-sized lithium secondary battery of Li5SiN3 cathode/propylene carbonate + LiClO4 electrolyte/Li anode structure shows a discharge capacity of 2.4 μAh cm−2 for a discharge current of 1.0 μA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shokoohi FK, Tarascon JM, Wilkens BJ (1991) Appl Phys Lett 59:1260–1262

    Article  CAS  Google Scholar 

  2. Wang B, Bates JB, Hart FX, Sales BC, Zuhr RA, Robertson JD (1996) J Electrochem Soc 143:3203–3213

    Article  CAS  Google Scholar 

  3. Kushida K, Kuriyama K, Nozaki T (2002) Appl Phys Lett 81:5066–5068

    Article  CAS  Google Scholar 

  4. Yamada Y, Nozaki T, Kuriyama K, Kushida K (2013) J Alloys and Compounds 551:44–47

    Article  CAS  Google Scholar 

  5. Kushida K, Kuriyama K (2000) Appl Phys Lett 77:4154–4156

    Article  CAS  Google Scholar 

  6. Kushida K, Kuriyama K (2001) Solid State Commun 118:615–618

    Article  CAS  Google Scholar 

  7. Juza R, Hund F (1946) Naturwissenschaften 38:121–122

    Article  Google Scholar 

  8. Yamane H, Kikkawa S, Koizumi M (1987) J Solid State Ionics 25:183–191

    Article  CAS  Google Scholar 

  9. Tapia-Ruiz N, Segalés M, Gregory Duncan H (2013) Coord Chem Rev 257:1978–2014

    Article  CAS  Google Scholar 

  10. Joint Committee for Powder Diffraction Standards (No. 40–1446)

  11. Kuriyama K, Yamashita Y, Ishikawa T, Kushida K (2007) Phys Rev B75:233204–1-4

  12. Kushida K, Kaneko Y, Kuriyama K (2004) Phys. Rev. B70:233303-1-4

  13. Aoyama H, Kuwano S, Kuriyama K, Kushdia K (2013) J Alloys and Compounds 577:11–14

  14. Juza R, Langer K, von Benda K (1968) Angew Chem Int Ed Engl 7:360–370

    Article  CAS  Google Scholar 

  15. Kuriyama K, Kato T, Tanaka T (1994) Phys Rev B 49:4511–4513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kuriyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, Y., Yamashita, T., Kuriyama, K. et al. Synthesis and charge-discharge performance of Li5SiN3 as a cathode material of lithium secondary batteries. J Solid State Electrochem 20, 1885–1888 (2016). https://doi.org/10.1007/s10008-016-3131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3131-9

Keywords

Navigation