Skip to main content
Log in

Lithium difluoro(oxalato)borate as an additive to suppress the aluminum corrosion in lithium bis(fluorosulfony)imide-based nonaqueous carbonate electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium bis(fluorosulfony)imide (LiFSI) is a promising alternative lithium salt to replace lithium hexafluorophosphate (LiPF6) due to its high conductivity and excellent compatibility with electrode material. On the other hand, the aluminum corrosion caused by LiFSI hinders its application in lithium ion battery. To solve this problem, lithium difluoro(oxalato)borate (LiDFOB) is added to suppress the aluminum corrosion in LiFSI-based nonaqueous carbonate electrolyte. The electrochemical tests in three-electrode cells and graphite/LiCoO2 full cells confirm that the addition of LiDFOB is beneficial to suppress the aluminum corrosion. In addition, the mechanism is proposed that the oxidation products of LiDFOB form a passivating film at the aluminum surface to suppress the corrosion based on the experimental results from SEM and XPS tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  CAS  Google Scholar 

  2. Aravindan V, Gnanaraj J, Madhavi S, Liu HK (2011) Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry 17:14326–14346

    Article  CAS  Google Scholar 

  3. Walker CW, Cox JD, Salomon M (1996) Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris(trifluoromethanesulfonyl)methide. J Electrochem Soc 143:L80–L82

    Article  CAS  Google Scholar 

  4. Xu W, Angell CA (2001) Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Solid State Lett 4:E1–E4

    Article  CAS  Google Scholar 

  5. Xu K, Zhang SS, Lee U, Allen JL, Jow TR (2005) LiBOB: is it an alternative salt for lithium ion chemistry? J Power Sources 146:79–85

  6. Zhang SS (2006) An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8:1423–1428

    Article  CAS  Google Scholar 

  7. Han HB, Zhou SS, Zhang DJ, Feng SW, Li LF, Liu K, Feng WF, Nie J, Li H, Huang XJ (2011) Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J Power Sources 196:3623–3632

    Article  CAS  Google Scholar 

  8. Li LF, Zhou SS, Han HB, Li H, Nie J, Armand M, Zhou ZB, Huang XJ (2011) Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. J Electrochem Soc 158:A74–A82

    Article  CAS  Google Scholar 

  9. Seki S, Takei K, Miyashiro H, Watanabe M (2011) Physicochemical and electrochemical properties of glyme-LiN(SO2F)2 complex for safe lithium-ion secondary battery electrolyte. J Electrochem Soc 158:A769–A774

    Article  CAS  Google Scholar 

  10. Reiter J, Nádherná M, Dominko R (2012) Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries. J Power Sources 205:402–407

    Article  CAS  Google Scholar 

  11. Eshetu GG, Grugeon S, Gachot G, Mathiron D, Armand M, Laruelle S (2013) LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: comparing thermal stabilities and identification of specific SEI-reinforcing additives. Electrochim Acta 102:133–141

  12. Philippe B, Dedryvere R, Gorgoi M, Rensmo H, Gonbeau D, Edstrom K (2013) Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study. J Am Chem Soc 135:9829–9842

    Article  CAS  Google Scholar 

  13. Evans T, Olson J, Bhat V, Lee SH (2014) Effect of organic solvent addition to PYR13FSI + LiFSI electrolytes on aluminum oxidation and rate performance of Li(Ni1/3Mn1/3Co1/3)O2 cathodes. J Power Sources 265:132–139

    Article  CAS  Google Scholar 

  14. Abouimrane A, Ding J, Davidson IJ (2009) Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: aluminum corrosion studies and lithium ion battery investigations. J Power Sources 189:693–696

    Article  CAS  Google Scholar 

  15. Yang H, Kwon K, Devine TM, Evans JW (2000) Aluminum corrosion in lithium batteries: an investigation using the electrochemical quartz crystal microbalance. J Electrochem Soc 147:4399–4407

    Article  CAS  Google Scholar 

  16. Kühnel RS, Lübke M, Winter M, Passerini S, Balducci A (2012) Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J Power Sources 214:178–184

    Article  Google Scholar 

  17. Han P, Zhang B, Huang C, Gu L, Li H, Cui G (2014) Anticorrosive flexible pyrolytic polyimide graphite film as a cathode current collector in lithium bis(trifluoromethane sulfonyl) imide electrolyte. Electrochem Commun 44:70–73

    Article  CAS  Google Scholar 

  18. Nakajima T, Mori M, Gupta V, Ohzawa Y, Iwata H (2002) Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sci 4:1385–1394

    Article  CAS  Google Scholar 

  19. Song SW, Richardson TJ, Zhuang GV, Devine TM, Evans JW (2004) Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte: a study using the EQCM. Electrochim Acta 49:1483–1490

    Article  CAS  Google Scholar 

  20. Zhang X, Devine TM (2006) Passivation of aluminum in lithium-ion battery electrolytes with LiBOB. J Electrochem Soc 153:B365–B369

    Article  CAS  Google Scholar 

  21. Zhang L, Chai L, Zhang L, Shen M, Zhang X, Battaglia VS (2014) Synergistic effect between lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6-based electrolyte for high-performance Li-ion batteries. Electrochim Acta 127:39–44

    Article  Google Scholar 

  22. Myung ST, Natsui H, Sun YK, Yashiro H (2010) Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt. J Power Sources 195:8297–8301

    Article  CAS  Google Scholar 

  23. Zhu Y, Li Y, Bettge M, Abraham DP (2012) Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells. J Electrochem Soc 159:A2109–A2117

    Article  CAS  Google Scholar 

  24. Dahbi M, Ghamouss F, Tran-Van F, Lemordant D, Anouti M (2011) Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J Power Sources 196:9743–9750

    Article  CAS  Google Scholar 

  25. Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267

    Article  CAS  Google Scholar 

  26. Zhang SS, Jow TR, Amine K, Henriksen GL (2002) LiPF6–EC–EMC electrolyte for li-ion battery. J Power Sources 107:18–23

    Article  CAS  Google Scholar 

  27. Xu F, Liu CY, Feng WF, Nie J, Li H, Huang XJ, Zhou ZB (2014) Molten salt of lithium bis(fluorosulfonyl)imide (LiFSI)-potassium bis(fluorosulfonyl)imide (KFSI) as electrolyte for the natural graphite/LiFePO4 lithium-ion cell. Electrochim Acta 135:217–223

    Article  CAS  Google Scholar 

  28. Li J, Xie K, Lai Y, Zhang Z, Li F, Hao X, Chen Y, Liu J (2010) Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells. J Power Sources 195:5344–5350

  29. Wu Q, Lu W, Miranda M, Honaker-Schroeder TK, Lakhsassi KY, Dees D (2012) Effects of lithium difluoro(oxalate)borate on the performance of Li-rich composite cathode in Li-ion battery. Electrochem Commun 24:78–81

    Article  CAS  Google Scholar 

  30. Edström K, Gustafsson T, Thomas JO (2004) The cathode–electrolyte interface in the Li-ion battery. Electrochim Acta 50:397–403

  31. Aurbach D, Weissman I, Schechter A (1996) X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions: a comparison with previous studies by fourier transform infrared spectroscopy. Langmuir 12:3991–4007

    Article  CAS  Google Scholar 

  32. Fu MH, Huang KL, Liu SQ, Liu JS, Li YK (2010) Lithium difluoro(oxalato)borate/ethylene carbonate+propylene carbonate+ethyl(methyl) carbonate electrolyte for LiMn2O4 cathode. J Power Sources 195:862–866

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Basic Research Program of China (973 Program 2014CB643406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Li, X., Wang, Z. et al. Lithium difluoro(oxalato)borate as an additive to suppress the aluminum corrosion in lithium bis(fluorosulfony)imide-based nonaqueous carbonate electrolyte. J Solid State Electrochem 20, 507–516 (2016). https://doi.org/10.1007/s10008-015-3069-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3069-3

Keywords

Navigation