Skip to main content
Log in

Role of anode material on the electrochemical oxidation of methyl orange

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic oxidation of methyl orange (MO, 5-(4-nitrophenylazo)salicylic acid) has been studied by cyclic voltammetry and bulk electrolysis, using a range of electrode materials such as Ti–Ru–Sn ternary oxide, lead dioxide and boron-doped diamond (BDD), glassy carbon (GC) and gold anodes. The results of voltammetries show that with all the electrode materials, in the potential region before oxygen evolution, the oxidation of MO involves simple electrode transfer that produces a polymeric film that deactivates the electrode surface, as confirmed by Fourier Transform Infrared Reflection-Absorption Spectroscopy (FTIRRAS) analysis. A very different behaviour was observed among the electrodes in the region of water decomposition. While BDD and PbO2 regained their initial activity by simple polarisation at 2.3 V vs. saturated calomel electrode (SCE) due to the production of high amount of hydroxyl radicals that destroy the polymeric film, TiRuSnO2, GC and gold cannot be completely reactivated, because they have a low overpotential for oxygen evolution, and this secondary reaction is favoured over polymer mineralization. The results of bulk electrolysis showed that after 3 h of polarisation at 10 mA cm−2, complete colour and chemical oxygen demand (COD) removal were obtained only with BDD anode. Using PbO2 MO was oxidised but a residual COD remains in the solution, while TiRuSnO2 permitted only a partial oxidation of MO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  Google Scholar 

  2. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166–167:603–643

    Article  Google Scholar 

  3. Bousher A, Shen X, Edyvean RGJ (1997) Removal of coloured organic matter by adsorption onto low-cost waste materials. Water Res 31:2084–2092

    Article  CAS  Google Scholar 

  4. Lau Y-Y, Wong Y-S, Teng T-T, Morad N, Rafatullah M, Ong S-A (2014) Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. Chem Eng J 246:383–390

    Article  CAS  Google Scholar 

  5. Santana MHP, Da Silva LM, Freitas AC, Boodts JFC, Fernandes KC, De Faria LA (2009) Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122. J Hazard Mater 164:10–17

    Article  CAS  Google Scholar 

  6. Torrades F, García-Montaño J (2014) Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions. Dyes Pigments 100:184–189

    Article  CAS  Google Scholar 

  7. Bali U, Çatalkaya E, Şengül F (2004) Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: a comparative study. J Hazard Mater 114:159–166

    Article  CAS  Google Scholar 

  8. Lucas MS, Peres JA (2006) Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigments 71:236–244

    Article  CAS  Google Scholar 

  9. Fernades Rêgo FE, Sales Solano AM, da Costa Soares IC, da Silva DR, Martinez-Huitle CA, Panizza M (2014) Application of electro-Fenton process as alternative for degradation of Novacron Blue dye. J Environ Chem Eng 2:875–880

    Article  Google Scholar 

  10. Fernandes A, Morao A, Magrinho M, Lopes A, Gonçalves I (2004) Electrochemical degradation of C. I. Acid Orange 7. Dyes Pigments 61:287–296

    Article  CAS  Google Scholar 

  11. Panizza M, Cerisola G (2007) Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl Catal B Environ 75:95–101

    Article  CAS  Google Scholar 

  12. Panizza M, Cerisola G (2009) Electro-Fenton degradation of synthetic dyes. Water Res 43:339–344

    Article  CAS  Google Scholar 

  13. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367

    Article  Google Scholar 

  14. Carlesi Jara C, Fino D, Specchia V, Saracco G, Spinelli P (2007) Electrochemical removal of antibiotics from wastewaters. Appl Catal B Environ 70:479–487

    Article  CAS  Google Scholar 

  15. Bock C, MacDougall B (1999) Anodic oxidation of p-benzoquinone and maleic acid. J Electrochem Soc 146:2925–2932

    Article  CAS  Google Scholar 

  16. Lanza MRV, Bertazzoli R (2002) Cyanide oxidation from wastewater in a flow electrochemical reactor. Ind Eng Chem Res 41:22–26

    Article  CAS  Google Scholar 

  17. Houk LL, Johnson SK, Feng J, Houk RS, Johnson DC (1998) Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte. J Appl Electrochem 28:1167–1177

    Article  CAS  Google Scholar 

  18. Panizza M, Cerisola G (2008) Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind Eng Chem Res 47:6816–6820

    Article  CAS  Google Scholar 

  19. Polcaro AM, Palmas S, Renoldi F, Mascia M (1999) On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J Appl Electrochem 29:147–151

    Article  CAS  Google Scholar 

  20. Martinez-Huitle CA, Quiroz MA, Comninellis C, Ferro S, De Battisti A (2004) Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochim Acta 50:949–956

    Article  CAS  Google Scholar 

  21. Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A (1999) Electrochemical incineration of glucose as a model organic substrate. I. Role of the electrode material. J Electrochem Soc 146:2175–2179

    Article  CAS  Google Scholar 

  22. Tahar NB, Savall A (1999) Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulations. J Appl Electrochem 29:277–283

    Article  CAS  Google Scholar 

  23. Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199

    Article  CAS  Google Scholar 

  24. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  25. Iniesta J, Michaud PA, Panizza M, Cerisola G, Aldaz A, Comninellis C (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578

    Article  CAS  Google Scholar 

  26. Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis C (2001) Oxidation of 4-Chlorophenol at boron-doped diamond electrodes for wastewater treatment. J Electrochem Soc 148:D60–D64

    Article  CAS  Google Scholar 

  27. Sires I, Cabot PL, Centellas F, Garrido JA, Rodriguez RM, Arias C, Brillas E (2006) Electrochemical degradation of clofibric acid in water by anodic oxidation. Comparative study with platinum and boron-doped diamond electrodes. Electrochim Acta 52:75–85

    Article  CAS  Google Scholar 

  28. Ozcan A, Sahin Y, Koparal AS, Oturan MA (2008) Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: influence of experimental parameters on degradation kinetics and mineralization efficiency. Water Res 42:2889–2898

    Article  CAS  Google Scholar 

  29. Panizza M, Cerisola G (2003) Influence of anode material on the electrochemical oxidation of 2-naphthol. Part 1. Cyclic voltammetry and potential step experiments. Electrochim Acta 48:3491–3497

    Article  CAS  Google Scholar 

  30. Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83

    Article  CAS  Google Scholar 

  31. Mattos-Costa FI, de Lima-Neto P, Machado SAS, Avaca LA (1998) Characterisation of surfaces modified by sol–gel derived Rux Ir1-xO2 coatings for oxygen evolution in acid medium. Electrochim Acta 44:1515–1523

    Article  CAS  Google Scholar 

  32. Zanta CLPS, De Andrade AR, Boodts JFC (2000) Electrochemical behaviour of olefins: oxidation at ruthenium-titanium dioxide and iridium-titanium dioxide coated electrodes. J Appl Electrochem 30:467–474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Panizza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labiadh, L., Barbucci, A., Cerisola, G. et al. Role of anode material on the electrochemical oxidation of methyl orange. J Solid State Electrochem 19, 3177–3183 (2015). https://doi.org/10.1007/s10008-015-2928-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2928-2

Keywords

Navigation