Skip to main content
Log in

Study of Cu, Cu-Ni and Rh-modified Cu porous layers as electrode materials for the electroanalysis of nitrate and nitrite ions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Three porous materials (Cu, a Cu-Ni alloy with 70 at.% Cu and Rh-modified Cu) have been tested as electrodes for the electroanalysis of nitrate and nitrite ions, in either neutral or basic media, using mainly a flow injection technique. Porous Cu and Cu-Ni were prepared by electrodeposition at high current density, exploiting the transient template action of hydrogen bubbles. Rh-modified Cu electrodes were obtained from porous Cu, through a galvanic displacement reaction. All materials had a linear response for both nitrates and nitrites, at concentrations up to 10−3 M, at least. Sensitivities, detection limits and stability were determined. Compared with Cu, used as a benchmark, (i) Rh-modified Cu had higher sensitivity for nitrates, comparable sensitivity for nitrites, lower or comparable detection limits and overall better stability; (ii) Cu-Ni had lower sensitivity, but exhibited lower detection limits and more stable performance for most analyte/medium combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burakham R, Oshima M, Grudpan K, Motomizu S (2004) Simple flow-injection system for the simultaneous determination of nitrite and nitrate in water samples. Talanta 64:1259–1265

    Article  CAS  Google Scholar 

  2. Gal C, Frenzel W, Möller J (2004) Re-examination of the cadmium reduction method and optimisation of conditions for the determination of nitrate by flow injection analysis. Microchim Acta 146:155–164

    Article  CAS  Google Scholar 

  3. Kazemzadeh A, Ensafi AA (2001) Sequential flow injection spectrophotometric determination of nitrite and nitrate in various samples. Anal Chim Acta 442:319–326

    Article  CAS  Google Scholar 

  4. Moorcroft MJ, Davis J, Compton RG (2001) Detection and determination of nitrate and nitrite: a review. Talanta 54:785–803

    Article  CAS  Google Scholar 

  5. Milhano C, Pletcher D (2009) The electrochemistry and electrochemical technology of nitrate. In: White RE, Vayenas CG, Gamboa-Aldeco ME (ed) Modern aspects of electrochemistry. Vol. 45. Springer, Heidelberg. 1–61

    Chapter  Google Scholar 

  6. Desai R, Villalba MM, Lawrence NS, Davis J (2009) Green approaches to field nitrate analysis: an electroanalytical perspective. Electroanalysis 21:789–796

    CAS  Google Scholar 

  7. Bodini ME, Sawyer DT (1977) Voltammetric determination of nitrate ion at parts-per-billion levels. Anal Chem 49:485–489

    Article  CAS  Google Scholar 

  8. Fogg AG, Scullion SP, Edmonds TE, Birch BJ (1991) Direct reductive amperometric determination of nitrate at a copper electrode formed in situ in a capillary-fill sensor device. Analyst 116:573–579

    Article  CAS  Google Scholar 

  9. Carpenter NG, Pletcher D (1995) Amperometric method for the determination of nitrate in water. Anal Chim Acta 317:287–293

    Article  CAS  Google Scholar 

  10. Davis J, Moorcroft MJ, Compton RG, Wilkins SJ, Cardosi MF (2000) Electrochemical detection of nitrate and nitrite at a copper modified electrode. Analyst 125:737–742

    Article  CAS  Google Scholar 

  11. Solak AO, Çekirdek P (2005) Square wave voltammetry determination of nitrate at freshly copper plated glassy carbon electrode. Anal Lett 38:271–280

    Article  CAS  Google Scholar 

  12. Paixão TRLC, Cardoso JL, Bertotti M (2007) Determination of nitrate in mineral water and sausage samples by using a renewable in situ copper modified electrode. Talanta 71:186–191

    Article  Google Scholar 

  13. Ning YF, Chen YP, Shen Y, Tang Y, Guo JS, Fang F, Liu SY (2013) Directly determining nitrate under wide pH range condition using a Cu-deposited Ti electrode. J Electrochem Soc 160:H715–H719

    Article  CAS  Google Scholar 

  14. Moorcroft MJ, Nei L, Davis J, Compton RG (2000) Enhanced electrochemical detection of nitrite and nitrate at a Cu-30Ni alloy electrode. Anal Lett 33:3127–3137

    Article  Google Scholar 

  15. Simpson BK, Johnson DC (2004) Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acid media. Electroanalysis 16:532–538

    Article  CAS  Google Scholar 

  16. Mattarozzi L, Cattarin S, Comisso N, Guerriero P, Musiani M, Vázquez-Gómez L, Verlato E (2013) Electrochemical reduction of nitrate and nitrite in alkaline media at Cu-Ni alloy electrodes. Electrochim Acta 89:488–496

    Article  CAS  Google Scholar 

  17. Mattarozzi L, Cattarin S, Comisso N, Gerbasi R, Guerriero P, Musiani M, Vázquez-Gómez L, Verlato E (2013) Electrodeposition of Cu-Ni alloy electrodes with bimodal porosity and their use for nitrate reduction. ECS Lett 2:D58–D60

    CAS  Google Scholar 

  18. Mattarozzi L, Cattarin S, Comisso N, Gambirasi A, Guerriero P, Musiani M, Vázquez-Gómez L, Verlato E (2014) Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali. Electrochim Acta 140:337–344

    Article  CAS  Google Scholar 

  19. Shin HC, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15:1610–1614

    Article  CAS  Google Scholar 

  20. Shin HC, Liu M (2004) Copper foam structures with highly porous nanostructured walls. Chem Mater 16:5460–5464

    Article  CAS  Google Scholar 

  21. Kim JH, Kim RH, Kwon HS (2008) Preparation of copper foam with 3-dimensionally interconnected spherical pore network. Electrochem Commun 10:1148–1151

    Article  CAS  Google Scholar 

  22. Nikolić ND, Popov KI (2010) Hydrogen co-deposition effects on the structure of electrodeposited copper. In: Djokić SS (ed) Modern aspects of electrochemistry. Vol 48. Springer, New York, pp. 1–70

    Google Scholar 

  23. Cherevko S, Chung CH (2011) Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution. Electrochem Commun 13:16–19

    Article  CAS  Google Scholar 

  24. Nam DH, Kim RH, Han DW, Kim JH, Kwon HS (2011) Effects of (NH4)2SO4 and BTA on the nanostructure of copper foam prepared by electrodeposition. Electrochim Acta 56:9397–9405

    Article  CAS  Google Scholar 

  25. Cherevko S, Xing X, Chung CH (2011) Hydrogen template assisted electrodeposition of sub-micrometer wires composing honeycomb-like porous Pb films. Appl Surf Sci 257:8054–8061

    Article  CAS  Google Scholar 

  26. Plowman BJ, Lathe A, Jones LA, Bhargava SK (2015) Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chem Commun 51:4331–4346

    Article  CAS  Google Scholar 

  27. Shin HC, Liu M (2005) Three-dimensional porous copper–tin alloy electrodes for rechargeable lithium batteries. Adv Funct Mater 15:582–586

    Article  CAS  Google Scholar 

  28. Cherevko S, Kulyk N, Chung CH (2012) Nanoporous Pt@AuxCu100–x by hydrogen evolution assisted electrodeposition of AuxCu100–x and galvanic replacement of Cu with Pt: electrocatalytic properties. Langmuir 28:3306–3315

    Article  CAS  Google Scholar 

  29. Dima GE, de Vooys ACA, Koper MTM (2003) Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J Electroanal Chem 554-555:15–23

    Article  CAS  Google Scholar 

  30. Comisso N, Cattarin S, Fiameni S, Gerbasi R, Mattarozzi L, Musiani M, Vázquez-Gómez L, Verlato E (2012) Electrodeposition of Cu-Rh alloys and their use as cathodes for nitrate reduction. Electrochem Commun 25:91–93

    Article  CAS  Google Scholar 

  31. Janz GJ (1961) Silver-silver halide electrodes. In: Ives DJG, Janz J (eds) Reference electrodes. Academic Press, New York, pp. 179–230

    Google Scholar 

  32. Verlato E, Cattarin S, Comisso N, Mattarozzi L, Musiani M, Vázquez-Gómez L (2013) Reduction of nitrate ions at Rh-modified Ni foam electrodes. Electrocatalysis 4:203–211

    Article  CAS  Google Scholar 

  33. Woods R (1976) Chemisorption at electrodes: hydrogen and oxygen on noble metals and their alloys. In: Bard AJ (ed) Electroanalytical Chemistry. Vol.9. Marcel Dekker, New York, pp. 1–162

    Google Scholar 

  34. Mattarozzi L, Cattarin S, Comisso N, Gerbasi R, Guerriero P, Musiani M, Vázquez-Gómez L, Verlato E (2015) Electrodeposition of compact and porous Cu-Zn alloy electrodes and their use in the cathodic reduction of nitrate. J Electrochem Soc 162:D236–D241

    Article  CAS  Google Scholar 

  35. Vázquez-Gómez L, Cattarin S, Guerriero P, Musiani M (2008) Hydrogen evolution on porous Ni cathodes modified by spontaneous deposition of Ru or Ir. Electrochim Acta 53:8310–8318

    Article  Google Scholar 

  36. Kear G, Barker BD, Walsh FC (2004) Electrochemical corrosion of unalloyed copper in chloride media—a critical review. Corros Sci 46:109–135

    Article  CAS  Google Scholar 

  37. Rosca V, Duca M, de Groot MT, Koper MTM (2009) Nitrogen cycle electrocatalysis. Chem Rev 109:2209–2244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Musiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comisso, N., Cattarin, S., Guerriero, P. et al. Study of Cu, Cu-Ni and Rh-modified Cu porous layers as electrode materials for the electroanalysis of nitrate and nitrite ions. J Solid State Electrochem 20, 1139–1148 (2016). https://doi.org/10.1007/s10008-015-2915-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2915-7

Keywords

Navigation