Skip to main content
Log in

Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nonlinear electrochemical impedance spectra (EIS) of electrochemical reactions with adsorbed intermediates were generated by numerical simulations and the conditions under which direct integration of Kramers–Kronig Transforms (KKT) flag the violations of linearity criterion were investigated. In addition, the spectra were validated using measurement model analysis and linear KKT method. A reaction with an adsorbed intermediate species, an electrochemical–chemical reaction with two adsorbed intermediate species and a third reaction with two adsorbed intermediate species and exhibiting negative resistance were chosen as candidate mechanisms. Large amplitude perturbations were used and the governing equations were solved without linearization. The results show that when the relationship between the logarithm of the faradaic current and dc potential is nonlinear, all the three methods are sensitive and successfully flag the nonlinear effect in the spectra. On the other hand, if the logarithm of the faradaic current is linearly related to the dc potential, the nonlinear effects are not identified by the direct integration of KKT. However, even in these cases, measurement model analysis and linear KKT validation method are sensitive to the violation of linearity criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barsoukov E, Macdonald JR (1989) Impedance spectroscopy, 2nd edn. Wiley, New Jersey

    Google Scholar 

  2. Orazem M, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, NJ

    Book  Google Scholar 

  3. Macdonald DD (1990) Electrochim Acta 35:1509–1525

    Article  CAS  Google Scholar 

  4. Macdonald JR (1990) Electrochim Acta 35:1483–1492

    Article  CAS  Google Scholar 

  5. Macdonald DD (2006) Electrochim Acta 51:1376–1388

    Article  CAS  Google Scholar 

  6. Wagner N, Gulzow E (2004) J Power Sources 127:341–344

    Article  CAS  Google Scholar 

  7. Darowicki K (1995) Corros Sci 37:913–925

    Article  CAS  Google Scholar 

  8. Darowicki K (1995) Electrochim Acta 40:439–445

    Article  CAS  Google Scholar 

  9. Darowicki K (1997) Electrochim Acta 42:1781–1788

    Article  CAS  Google Scholar 

  10. Darowicki K (1997) Electrochim Acta 42:1073–1079

    Article  CAS  Google Scholar 

  11. Diard JP, Le Gorrec B, Montella C (1997) Electrochim Acta 42:1053–1072

    Article  CAS  Google Scholar 

  12. Wilson JR, Schwartz DT, Adler SB (2006) Electrochim Acta 51:1389–1402

    Article  CAS  Google Scholar 

  13. Wilson JR, Sase M, Kawada T, Adler SB (2007) Electrochem Solid-State Lett 10:B81–B86

    Article  CAS  Google Scholar 

  14. Keddam M, Mattos OR, Takenouti H (1986) Electrochim Acta 31:1147–1158

    Article  CAS  Google Scholar 

  15. Keddam M, Mattos OR, Takenouti H (1986) Electrochim Acta 31:1159–1165

    Article  CAS  Google Scholar 

  16. Macdonald DD, Real S, Smedley SI, Urquidi-Macdonald M (1988) J Electrochem Soc 135:2410–2416

    Article  CAS  Google Scholar 

  17. Gregori J, Garcia-Jareno JJ, Gimenez-Romero D, Roig A, Vicente F (2007) J Electrochem Soc 154:C371–C377

    Article  CAS  Google Scholar 

  18. Bojinov M (1996) J Electroanal Chem 405:15–22

    Article  Google Scholar 

  19. Harrington DA (1997) Can J Chem 75:1508–1517

    Article  CAS  Google Scholar 

  20. Urquidi-Macdonald M, Real S, Macdonald DD (1990) Electrochim Acta 35:1559–1566

    Article  CAS  Google Scholar 

  21. Van Gheem E, Pintelon R, Vereecken J, Schoukens J, Hubin A, Verboven P, Blajiev O (2004) Electrochim Acta 49:4753–4762

    Article  Google Scholar 

  22. Van Ingelgem Y, Tourwé E, Blajiev O, Pintelon R, Hubin A (2009) Electroanalysis 21:730–739

    Article  Google Scholar 

  23. Smith DE, Reinmuth WH (1961) Anal Chem 33:482–485

    Article  CAS  Google Scholar 

  24. Smith DE (1966) In: Bard AJ (ed) Electroanalytical chemistry: a series of advances, vol 1. Marcel Dekker, New York

    Google Scholar 

  25. Paynter J, Reinmuth WH (1962) Anal Chem 34:1335–1336

    Article  CAS  Google Scholar 

  26. Hirschorn B, Tribollet B, Orazem ME (2008) Isr J Chem 48:133–142

    Article  CAS  Google Scholar 

  27. Hirschorn B, Orazem ME (2009) J Electrochem Soc 156:C345–C351

    Article  CAS  Google Scholar 

  28. Noyel Victoria S, Ramanathan S (2011) Electrochim Acta 56:2606–2615

    Article  Google Scholar 

  29. Kaisare N, Ramani V, Pushpavanam K, Ramanathan S (2011) Electrochim Acta 56:7467–7475

    Article  CAS  Google Scholar 

  30. Macdonald DD, Urquidi-Macdonald M (1985) J Electrochem Soc 132:2316–2319

    Article  CAS  Google Scholar 

  31. Urquidi-Macdonald M, Real S, Macdonald DD (1986) J Electrochem Soc 133:2018–2024

    Article  CAS  Google Scholar 

  32. Esteban JM, Orazem ME (1991) J Electrochem Soc 138:67–76

    Article  CAS  Google Scholar 

  33. Ramanathan S, Ramani V, Sruthi S (2012) ECS Trans 45:37–50

    Google Scholar 

  34. Sadkowski A, Dolata M, Diard JP (2004) J Electrochem Soc 151:E20–E31

    Article  CAS  Google Scholar 

  35. Macdonald DD, Urquidi-Macdonald M (1990) J Electrochem Soc 137:515–517

    Article  Google Scholar 

  36. Macdonald DD, Urquidi-Macdonald M (1990) J Electrochem Soc 137:3304–3309

    Article  CAS  Google Scholar 

  37. Santhanam S, Ramani V, Ramanathan S (2012) J Electrochem Solid-State Lett 16:1019–1032

    Article  CAS  Google Scholar 

  38. Agarwal P, Orazem ME, Gracia Rubio LH (1993) Application of the Kramers Kronig relations in electrochemical impedance spectroscopy. In: Scully JR, Silverman DC, Kendig MW (eds) Electrochemical impedance: analysis and interpretation STP 1188. ASTM, Philadelphia, pp 115–139

    Chapter  Google Scholar 

  39. Agarwal P, Orazem ME (1995) J Electrochem Soc 142:4159–4168

    Article  CAS  Google Scholar 

  40. Agarwal P, Orazem ME (1992) J Electrochem Soc 139:1917–1927

    Article  CAS  Google Scholar 

  41. Agarwal P, Crisalle OD, Orazem ME, Gracia Rubio LH (1995) J Electrochem Soc 142:4149–4158

    Article  CAS  Google Scholar 

  42. Boukamp BA, Macdonald JR (1994) Solid State Ionics 74:85–101

    Article  CAS  Google Scholar 

  43. Boukamp BA (1995) J Electrochem Soc 142:1885–1894

    Article  CAS  Google Scholar 

  44. Boukamp BA (2004) Solid State Ionics 169:65–73

    Article  CAS  Google Scholar 

  45. Maddala J, Krishnaraj S, Vinod Kumar V, Ramanathan S (2010) J Electroanal Chem 638:183–188

    Article  CAS  Google Scholar 

  46. Macdonald JR (1993) Electrochim Acta 38:1883–1890

    Article  CAS  Google Scholar 

  47. de Chialvo MRG, Chialvo AC (2000) J Electrochem Soc 147:1619–1622

    Article  Google Scholar 

  48. Kadyk T, Hanke-Rauschenbach R, Sundmacher K (2009) J Electroanal Chem 630:19–27

    Article  CAS  Google Scholar 

  49. Franceschetti DR, Macdonald JR (1977) J Electroanal Chem 82:271–301

    Article  Google Scholar 

  50. Córdoba-Torres P, Mesquita TJ, Devos O, Tribollet B, Roche V, Nogueira RP (2012) Electrochim Acta 72:172–178

    Article  Google Scholar 

  51. Keddam M, Mattos OR, Takenouti H (1981) J Electrochem Soc 128:257–266

    Article  CAS  Google Scholar 

  52. Gabrielli C, Keddam M, Takenouti H (1993) Kramers Kronig transformation in relation to the interface regulating device. In: Scully JR, Silverman DC, Kendig MW (eds) Electrochemical impedance: analysis and interpretation STP 1188. ASTM, Philadelphia, pp 140–153

    Chapter  Google Scholar 

  53. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas graphs and mathematical tables. Dover Publications, NewYork

    Google Scholar 

Download references

Acknowledgments

We wish to express our thanks to Prof. D.D. Macdonald, UC Berkeley for the Kramers–Kronig Transform software, Prof. B. Boukamp, U Twente for the linear KKT software (http://www.utwente.nl/tnw/ims/publication/downloads) and the anonymous reviewer for the detailed comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathan Srinivasan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasmin, F., Srinivasan, R. Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms. J Solid State Electrochem 19, 1833–1847 (2015). https://doi.org/10.1007/s10008-015-2824-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2824-9

Keywords

Navigation