Skip to main content

Advertisement

Log in

Comparison of the photoelectrochemical properties of RDS NiO thin films for p-type DSCs with different organic and organometallic dye-sensitizers and evidence of a direct correlation between cell efficiency and charge recombination

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Undyed mesoporous NiO in the configuration of thin film (thickness 2–3 μm) presents photoelectrochemical activity as cathode of a p-type dye-sensitized solar cell (p-DSC) towards the reduction of triiodide to iodide under irradiation with a solar simulator. The photoelectroactivity of the oxide prepared via microwave plasma sintering (or rapid discharge sintering, RDS) has been observed in the spectral range 300–500 nm with the incident photon-to-current conversion efficiency (IPCE) reaching a maximum of 8.7 % at 375 nm. Upon sensitization, the characteristic photoelectrochemical activity of NiO can be either enhanced or depressed depending on the nature of the dye-sensitizer. The comparative analysis of the JV and IPCE curves of the p-DSCs based on bare NiO and four differently sensitized NiO cathodes reveals that N719, black dye (BD), and commercial squaraine 2 (SQ2) decrease the efficiency of conversion of dyed NiO with respect to bare NiO in the range of photoelectroactivity of the latter (300–500 nm). The fourth dye P1 represents the sole exception since its employment brings about an enhancement of the quantum efficiency of P1-sensitized vs. unsensitized NiO up to a maximum of 21 % within the spectral interval of reference for NiO (300–500 nm). Outside the range of NiO photoelectrochemical activity, i.e., λ > 500 nm, only N719 does not introduce a gain of quantum efficiency with respect to bare NiO despite the observation of spectral sensitization up to 580 nm for N719-sensitized NiO. The impedance spectra recorded under illumination shows a direct proportionality between the overall efficiency (η) of the variously sensitized p-DSCs and the amplitude of the semicircle which is generally associated with the process of charge recombination at the electrode/electrolyte interface with η decreasing with the increase of the recombination resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Sommeling P, O’Regan B, Haswell R, Smit H, Bakker N, Smits J, Kroon J, Van Roosmalen J (2006) J Phys Chem B 110:19191–19197

    Article  CAS  Google Scholar 

  3. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  4. He J, Lindström H, Hagfeldt A, Lindquist SE (2000) Solar Energy Mater Solar Cells 62:265–273

    Article  CAS  Google Scholar 

  5. Powar S, Wu Q, Weidelener M, Nattestad A, Hu Z, Mishra A, Bäuerle P, Spiccia L, Cheng YB, Bach U (2012) Energy Environ Sci 5:8896–8900

    Article  CAS  Google Scholar 

  6. Awais M, Gibson E, Vos JG, Dowling DP, Hagfeldt A, Dini D (2014) Chem Electro Chem 2:384–391

    Google Scholar 

  7. Sumikura S, Mori S, Shimizu S, Usami H, Suzuki E (2008) J Photochem Photobio A 199:1–7

    Article  CAS  Google Scholar 

  8. Adler D, Feinleib J (1970) Phys Rev B 2:3112–3134

    Article  Google Scholar 

  9. Awais M, Rahman M, Don MacElroy J, Coburn N, Dini D, Vos JG, Dowling DP (2010) Surf Coat Techn 204:2729–2736

    Article  CAS  Google Scholar 

  10. Odobel F, Pellegrin Y, Gibson EA, Hagfeldt A, Smeigh AL, Hammarström L (2012) Coord Chem Rev 256:2414–2423

    Article  CAS  Google Scholar 

  11. Tachiki M, Hosomi T, Kobayashi T (2000) Jpn J Appl Phys 39:1817–1820

    Article  CAS  Google Scholar 

  12. Mahmoud S, Akl A, Kamal H, Abdel-Hady K (2002) Physica B Cond Matt 311:366–375

    Article  CAS  Google Scholar 

  13. Kamal H, Elmaghraby E, Ali S, Abdel-Hady K (2004) J Cryst Growth 262:424–434

    Article  CAS  Google Scholar 

  14. Berkat L, Cattin L, Reguig A, Regragui M, Bernede J (2005) Mater Chem Phys 89:11–20

    Article  CAS  Google Scholar 

  15. He J, Lindström H, Hagfeldt A, Lindquist SE (1999) J Phys Chem B 103:8940–8948

    Article  CAS  Google Scholar 

  16. Nakasa A, Usami H, Sumikura S, Hasegawa T, Koyama T, Suzuki E (2005) Chem Lett 34:500–501

    Article  CAS  Google Scholar 

  17. Passerini S, Scrosati B, Gorenstein A (1990) J Electrochem Soc 137:3297–3300

    Article  CAS  Google Scholar 

  18. Bandara J, Yasomanee J (2007) Semicond Sci Techn 22:20–24

    Article  CAS  Google Scholar 

  19. Wang D, Xu R, Wang X, Li Y (2006) Nanotechn 17:979–983

    Article  CAS  Google Scholar 

  20. Xi Y, Li D, Djurisi A, Xie M, Man K, Chan W (2008) Electrochem Solid State Lett 11:D56–D59

    Article  CAS  Google Scholar 

  21. Vera F, Schrebler R, Munoz E, Suarez C, Cury P, Gomez H, Cordova R, Marotti R, Dalchiele E (2005) Thin Solid Films 490:182–188

    Article  CAS  Google Scholar 

  22. Lampert C, Omstead T, Yu P (1986) Solar Energy Mater 14:161–174

    Article  CAS  Google Scholar 

  23. Decker F, Passerini S, Pileggi R, Scrosati B (1992) Electrochim Acta 37:1033–1038

    Article  CAS  Google Scholar 

  24. Wruck D, Rubin M (1993) J Electrochem Soc 140:1097–1104

    Article  CAS  Google Scholar 

  25. De Souza S, Visco SJ, De Jonghe LC (1997) Solid State Ionics 98:57–61

    Article  Google Scholar 

  26. Haile SM (2003) Acta Mater 51:5981–6000

    Article  CAS  Google Scholar 

  27. Hotovy I, Huran J, Spiess L, Hascik S, Rehacek V (1999) Sensors Actuators B 57:147–152

    Article  CAS  Google Scholar 

  28. Hotovy I, Huran J, Spiess L, Liday J, Sitter H, Hasick S (2002) Vacuum 69:237–242

    Article  CAS  Google Scholar 

  29. Lee SH, Tracy CE, Pitts JR (2004) Electrochem Solid State Lett 7:A299–A301

    Article  CAS  Google Scholar 

  30. Nam KW, Yoon WS, Kim KB (2002) Electrochim Acta 47:3201–3209

    Article  CAS  Google Scholar 

  31. Lu YM, Hwang WS, Yang J, Chuang H (2002) Thin Solid Films 420:54–61

    Article  Google Scholar 

  32. Awais M, Rahman M, Don MacElroy J, Dini D, Vos JG, Dowling DP (2011) Surf Coat Techn 205:S245–S249

    Article  CAS  Google Scholar 

  33. Gibson EA, Awais M, Dini D, Dowling DP, Pryce MT, Vos JG, Boschloo G, Hagfeldt A (2013) Phys Chem Chem Phys 15:2411–2420

    Article  CAS  Google Scholar 

  34. Nattestad A, Mozer A, Fischer M, Cheng YB, Mishra A, Bäuerle P, Bach U (2009) Nat Mater 9:31–35

    Article  Google Scholar 

  35. Weidelener M, Mishra A, Nattestad A, Powar S, Mozer AJ, Mena-Osterlitz W, Cheng YB, Bach U, Bäuerle P (2012) J Mater Chem 22:7366–7379

    Article  CAS  Google Scholar 

  36. Powar S, Daeneke T, Ma MT, Fu D, Duffy NW, Götz G, Weidelener M, Mishra A, Bäuerle P, Spiccia L, Bach U (2013) Angew Chemie Int Ed 52:602–605

    Article  CAS  Google Scholar 

  37. Wang KC, Jeng JY, Shen PS, Chang YC, Diau EWG, Tsai CH, Chao TY, Hsu HC, Lin PY, Chen P, Guo TF, Wen TC (2014) Sci Rep 4:4756

    Google Scholar 

  38. Tian H, Xu B, Chen H, Johansson EMJ, Boschloo G (2014) Perovskite sensitized p-type mesoporous NiO solar cells. ChemSusChem. doi:10.1002/cssc.201402032

    Google Scholar 

  39. Odobel F, Le Pleux L, Pellegrin Y, Blart E (2010) Acc Chem Res 43:1063–1071

    Article  CAS  Google Scholar 

  40. Halme J, Saarinen J, Lund P (2006) Solar Energy Mater Solar Cells 90:887–899

    Article  CAS  Google Scholar 

  41. McConnell M, Dowling DP, Pope C, Donnelly K, Ryder A, O’Connor G (2002) Diamond Rel Mater 11:1036–1040

    Article  CAS  Google Scholar 

  42. Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) J Am Chem Soc 130:8570–8571

    Article  CAS  Google Scholar 

  43. De Rossi F, Di Gaspare L, Reale A, Di Carlo A, Brown TM (2013) J Mater Chem A 1:12941–12947

    Article  Google Scholar 

  44. Venditti I, Barbero N, Russo MV, Di Carlo A, Decker F, Fratoddi I, Barolo C, Dini D (2014) Mater Res Express 1:015040

    Article  Google Scholar 

  45. Li L, Gibson EA, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L (2010) Adv Mater 22:1759–1762

    Article  CAS  Google Scholar 

  46. Yum JH, Moehl T, Yoon J, Chandiran AK, Kessler F, Gratia P, Grätzel M (2014) J Phys Chem C 118:16799–16805

    Article  CAS  Google Scholar 

  47. Gregg BA, Pichot F, Ferrere S, Fields CL (2001) J Phys Chem B 105:1422–1429

    Article  CAS  Google Scholar 

  48. Boschloo G, Hagfeldt A (2001) J Phys Chem B 105:3039–3044

    Article  CAS  Google Scholar 

  49. Renaud A, Chavillon B, Cario L, Le Pleux L, Szuwarski N, Pellegrin Y, Blart E, Gautron E, Odobel F, Jobic S (2013) J Phys Chem C 117:22478–22483

    Article  CAS  Google Scholar 

  50. Awais M, Dowling DP, Rahman M, Vos JG, Decker F, Dini D (2013) J Appl Electrochem 43:191–197

    Article  CAS  Google Scholar 

  51. Nattestad A, Ferguson M, Kerr R, Cheng YB, Bach U (2008) Nanotechn 19:295304

    Article  Google Scholar 

  52. Clifford JN, Palomares E, Nazeeruddin MK, Gratzel M, Durrant JR (2007) J Phys Chem C 111:6561–6567

    Article  CAS  Google Scholar 

  53. Qin P, Linder M, Brinck T, Boschloo G, Hagfeldt A, Sun L (2009) Adv Mater 21:2993–2996

    Article  CAS  Google Scholar 

  54. Lee CH, Yun HJ, Jung MR, Lee JG, Kim SH, Kim JH (2014) Electrochim Acta 138:148–154

    Article  CAS  Google Scholar 

  55. Chang CH, Chen YC, Hsu CY, Chou HH, Lin JT (2012) Org Lett 14:4726–4729

    Article  CAS  Google Scholar 

  56. Warnan J, Gardner J, Le Pleux L, Petersson J, Pellegrin Y, Blart E, Hammarström L, Odobel F (2014) J Phys Chem C 118:103–113

    Article  CAS  Google Scholar 

  57. Kern R, Sastrawan R, Ferber J, Stangl R, Luther J (2002) Electrochim Acta 47:4213–4225

    Article  CAS  Google Scholar 

  58. Ganapathy V, Karunagaran B, Rhee SW (2010) J Power Sources 195:5138–5143

    Article  CAS  Google Scholar 

  59. Lee KM, Suryanarayanan V, Ho KC (2007) Solar Energy Mater Solar Cells 91:1416–1420

    Article  CAS  Google Scholar 

  60. Tsai TH, Chiou SC, Chen SM (2011) Int J Electrochem Sci 6:3333–3343

    CAS  Google Scholar 

  61. Natu G, Huang Z, Ji Z, Wu Y (2012) Langmuir 28:950–956

    Article  CAS  Google Scholar 

  62. Huang Z, Natu G, Ji Z, Hasin P, Wu Y (2011) J Phys Chem C 115:25109–25114

    Article  CAS  Google Scholar 

  63. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A (2005) Solar Energy Mater Solar Cells 87:117–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is partially supported by Science Foundation Ireland (SFI) under Grant No. [07/SRC/B1160]. This research project was supported by Regione Lazio and CHOSE. The authors acknowledge the financial support from MIUR through the research project PRIN 2010-2011 (protocol no. 20104XET32). D.D. acknowledges the financial support from the University of Rome “LA SAPIENZA” through the program Ateneo 2012 (Protocol No. C26A124AXX). The authors are indebted to Dr. Fabrizio Caprioli (Dept. of Chemistry at the University of Rome “LA SAPIENZA”) for the compilation of Table 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Dini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheehan, S., Naponiello, G., Odobel, F. et al. Comparison of the photoelectrochemical properties of RDS NiO thin films for p-type DSCs with different organic and organometallic dye-sensitizers and evidence of a direct correlation between cell efficiency and charge recombination. J Solid State Electrochem 19, 975–986 (2015). https://doi.org/10.1007/s10008-014-2703-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2703-9

Keywords

Navigation