Skip to main content
Log in

Mesoporous silica xerogel modified with bridged ionic silsesquioxane used to immobilize copper tetrasulfonated phthalocyanine applied to electrochemical determination of dopamine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Silica xerogel was modified with an ionic silsesquioxane containing the cationic 1,4-diazoniabicyclo[2.2.2]octane bridged group and it was used as matrix for immobilization of copper tetrasulfonated phthalocyanine, resulting in Si/Db/CuTsPc material. This material was characterized by ultraviolet-visible and infrared spectroscopy, elemental and thermogravimetric analyses, nitrogen adsorption-desorption isotherms, and scanning electron microscopy. The Si/Db/CuTsPc material was used to develop a carbon paste electrode for dopamine determination. The electrochemical behavior of dopamine was evaluated by cyclic voltammetry and chronoamperometry. The optimal experimental conditions were determined (pH = 4.5 and oxygen atmosphere) using a 0.1 mol L−1 phosphate buffer solution. The carbon paste electrode modified with the Si/Db/CuTsPc material shows a linear response for current intensity with the dopamine concentration in the range of 0.010 to 0.107 mmol L−1. The detection limit was 0.42 μmol L−1, and the sensitivity was 7.15 μA (mmol L−1)−1, making the system promising to be applied as electrochemical sensor for dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang A, Neumeyer JL, Baldessarini RJ (2007) Chem Rev 107:274–302

    Article  CAS  Google Scholar 

  2. Yang L, Liu D, Huang J, You T (2014) Sensors Actuators B 193:166–172

    Article  CAS  Google Scholar 

  3. Qian T, Yu C, Zhou X, Wu S, Shen J (2014) Sensors Actuators B 193:759–763

    Article  CAS  Google Scholar 

  4. Bouri M, Lerma-García MJ, Salghi R, Zougagh M, Ríos A (2012) Talanta 99:897–903

    Article  CAS  Google Scholar 

  5. Feng J-J, Guo H, Li Y-F, Wang Y-H, Chen W-Y, Wang A-J (2013) ACS Appl Mater Interfaces 5:1226–1231

    Article  CAS  Google Scholar 

  6. Syslová K, Rambousek L, Kuzma M, Najmanová V, Bubeníková-Valešová V, Slamberová R, Kačer P (2011) J Chromatogr A 1218:3382–3391

    Article  Google Scholar 

  7. Mu Q, Xu H, Li Y, Ma S, Zhong X (2014) Analyst 139:93–98

    Article  CAS  Google Scholar 

  8. Xue C, Han Q, Wang Y, Wu J, Wen T, Wang R, Hong J, Zhou X, Jiang H (2013) Biosens Bioelectron 49:199–203

    Article  CAS  Google Scholar 

  9. Yu B, Yuan H, Yang Y-Y, Cong H-L, Hao T-Z, Xu X-D, Zhang X-L, Yang S-J, Zhang L-X (2014) Chin Chem Lett 25:523–528

    Article  CAS  Google Scholar 

  10. Fu C, Yang W, Chen X, Evans DG (2009) Electrochem Commun 11:997–1000

    Article  CAS  Google Scholar 

  11. Wang F, Yang J, Wu K (2009) Anal Chim Acta 638:23–28

    Article  CAS  Google Scholar 

  12. Kang J, Zhuo L, Lu X, Wang X (2005) J Solid State Electrochem 9:114–120

    Article  CAS  Google Scholar 

  13. Salgado R, del Rio R, del Valle MA, Armijo F (2013) J Electroanal Chem 704:130–136

    Article  CAS  Google Scholar 

  14. Li NB, Ren W, Luo HQ (2008) J Solid State Electrochem 12:693–699

    Article  CAS  Google Scholar 

  15. Ti C-C, Kumar SA, Chen S-M (2009) J Solid State Electrochem 13:397–406

    Article  CAS  Google Scholar 

  16. Zhang L, Shi Z, Lang Q (2011) J Solid State Electrochem 15:801–809

    Article  CAS  Google Scholar 

  17. Yang S, Li G, Yang R, Xia M, Qu L (2011) J Solid State Electrochem 15:1909–1918

    Article  CAS  Google Scholar 

  18. Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J (2009) Electroanalysis 21:7–28

    Article  Google Scholar 

  19. Ardakani MM, Talebi A, Naeimi H, Barzoky MN, Taghavinia N (2009) J Solid State Electrochem 13:1433–1440

    Article  CAS  Google Scholar 

  20. Liu C, Zhang J, Yifeng E, Yue J, Chen L, Li D (2014) Electron J Biotechnol 17:183–188

    Article  CAS  Google Scholar 

  21. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Anal Chim Acta 735:37–45

    Article  CAS  Google Scholar 

  22. Arenas LT, Gay DSF, Moro CC, Dias SLP, Azambuja DS, Costa TMH, Benvenutti EV, Gushikem Y (2008) Microporous Mesoporous Mater 112:273–283

    Article  CAS  Google Scholar 

  23. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  24. Walcarius A, Etienne M, Bessière J (2002) Chem Mater 14:2757–2766

    Article  CAS  Google Scholar 

  25. Melde BJ, Johnson BJ, Charles PT (2008) Sensors 8:5202–5228

    Article  CAS  Google Scholar 

  26. Maroneze CM, Rahim A, Fattori N, Costa LP, Sigoli FA, Mazali IO, Custodio R, Gushikem Y (2014) Electrochim Acta 123:435–440

    Article  CAS  Google Scholar 

  27. Walcarius A, Mandler D, Cox JA, Collinson M, Lev O (2005) J Mater Chem 15:3663–3689

    Article  CAS  Google Scholar 

  28. Nunes MR, Gushikem Y, Landers R, Dupont J, Costa TMH, Benvenutti EV (2012) J Sol-Gel Sci Technol 63:258–265

    Article  CAS  Google Scholar 

  29. Gushikem Y, Benvenutti EV, Kholin YV (2008) Pure Appl Chem 80:1593–1611

    Article  CAS  Google Scholar 

  30. Gay DSF, Fernandes THM, Amavisca CV, Cardoso NF, Benvenutti EV, Costa TMH, Lima EC (2010) Desalination 258:128–135

    Article  CAS  Google Scholar 

  31. Pereira MB, Michels AF, Gay DSF, Benvenutti EV, Costa TMH, Horowitz F (2010) Opt Mater 32:1170–1176

    Article  CAS  Google Scholar 

  32. de Menezes EW, Nunes MR, Arenas LT, Dias SLP, Garcia ITS, Gushikem Y, Costa TMH, Benvenutti EV (2012) J Solid State Electrochem 16:3703–3713

    Article  CAS  Google Scholar 

  33. Caldas EM, de Menezes EW, Pizzolato TM, Dias SLP, Costa TMH, Arenas LT, Benvenutti EV (2014) J Sol-Gel Sci Technol 72:282–289

    Article  CAS  Google Scholar 

  34. Arenas LT, Dias SLP, Moro CC, Costa TMH, Benvenutti EV, Lucho AMS, Gushikem Y (2006) J Colloid Interface Sci 297:244–250

    Article  CAS  Google Scholar 

  35. de Menezes EW, Lima EC, Royer B, de Souza FE, dos Santos BD, Gregório JR, Costa TMH, Gushikem Y, Benvenutti EV (2012) J Colloid Interface Sci 378:10–20

    Article  Google Scholar 

  36. de Jesus CG, dos Santos V, Canestraro CD, Zucolotto V, Fujiwara ST, Gushikem Y, Wohnrath K, Pessoa CA (2011) J Nanosci Nanotechnol 11:1–10

    Article  Google Scholar 

  37. Sorokin AB (2013) Chem Rev 113:8152–8191

    Article  CAS  Google Scholar 

  38. Toma HE, Bonifácio LS, Anaissi FJ (2005) Quim Nova 28:897–900

    Article  CAS  Google Scholar 

  39. Oni J, Nyokong T (2001) Anal Chim Acta 434:9–21

    Article  CAS  Google Scholar 

  40. Santos LSS, Landers R, Gushikem Y (2011) Talanta 85:1213–1216

    Article  CAS  Google Scholar 

  41. Gutierrez AP, Griveau S, Richard C, Pailleret A, Granados SG, Bedioui F (2009) Electroanalysis 21:2303–2310

    Article  Google Scholar 

  42. Perez EF, Kubota LT, Tanaka AA, de Oliveira NG (1998) Electrochim Acta 43:1665–1673

    Article  CAS  Google Scholar 

  43. Canevari TC, Luz RCS, Gushikem Y (2008) Electroanalysis 20:765–770

    Article  CAS  Google Scholar 

  44. Rahim A, Barros SBA, Arenas LT, Gushikem Y (2011) Electrochim Acta 56:1256–1261

    Article  CAS  Google Scholar 

  45. Barros SBA, Rahim A, Tanaka AA, Arenas LT, Landers R, Gushikem Y (2013) Electrochim Acta 87:140–147

    Article  CAS  Google Scholar 

  46. Sancy M, Silva JF, Pavez J, Zagal JH (2013) J Chil Chem Soc 58:2117–2121

    Article  CAS  Google Scholar 

  47. Santos WJR, Sousa AL, Sotomayor MPT, Damos FS, Tanaka SMCN, Kubota LT, Tanaka AA (2009) J Braz Chem Soc 20:1180–1187

    Article  CAS  Google Scholar 

  48. Shaidarova LG, Gedmina AV, Artamonova ML, Chelnokova IA, Budnikov HC (2013) J Anal Chem 68:516–524

    Article  CAS  Google Scholar 

  49. Rahim A, Barros SBA, Kubota LT, Gushikem Y (2011) Electrochim Acta 56:10116–10121

    Article  CAS  Google Scholar 

  50. Arenas LT, Pinheiro AC, Ferreira JD, Livotto PR, Pereira VP, Gallas MR, Gushikem Y, Costa TMH, Benvenutti EV (2008) J Colloid Interface Sci 318:96–102

    Article  CAS  Google Scholar 

  51. Pavan FA, Gobbi SA, Costa TMH, Benvenutti EV (2002) J Therm Anal Calorim 68:199–206

    Article  CAS  Google Scholar 

  52. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic, London

    Google Scholar 

  53. Ying JY, Benziger JB, Navrotsky A (1993) J Am Ceram Soc 76:2571–2582

    Article  CAS  Google Scholar 

  54. Costa TMH, Gallas MR, Benvenutti EV, da Jornada JAH (1997) J Non-Cryst Solids 220:195–201

    Article  CAS  Google Scholar 

  55. Foschiera JL, Pizzolato TM, Benvenutti EV (2001) J Braz Chem Soc 12:159–164

    Article  CAS  Google Scholar 

  56. Arenas LT, Aguirre TAS, Langaro A, Gushikem Y, Benvenutti EV, Costa TMH (2003) Polymer 44:5521–5525

    Article  CAS  Google Scholar 

  57. Arenas LT, Langaro A, Gushikem Y, Moro CC, Benvenutti EV, Costa TMH (2003) J Sol-Gel Sci Technol 28:51–56

    Article  CAS  Google Scholar 

  58. Siqueira JR, Gasparotto LHS, Crespilho FN, Carvalho AJF, Zucolotto V, Oliveira ON (2006) J Phys Chem B 110:22690–22694

    Article  CAS  Google Scholar 

  59. Leznoff CC, Lever ABP (1989) Phthalocyanines properties and applications Vol 1. John Wiley & Sons, New York

    Google Scholar 

  60. Machado ME, de Menezes EW, Bregles LP, Caramão EB, Benvenutti EV, Zini CA (2013) J Sep Sci 36:1636–1643

    Article  CAS  Google Scholar 

  61. Malem F, Mandler D (1993) Anal Chem 65:37–41

    Article  CAS  Google Scholar 

  62. Wu D, Li Y, Zhang Y, Wang P, Wei Q, Du B (2014) Electrochim Acta 116:244–249

    Article  CAS  Google Scholar 

  63. Winter E, Codognoto L, Rath S (2006) Electrochim Acta 51:1282–1288

    Article  CAS  Google Scholar 

  64. Alencar WS, Crespilho FN, Santos MRMC, Zucolotto V, Oliveira ON, Silva WC (2007) J Phys Chem C 111:12817–12821

    Article  CAS  Google Scholar 

  65. Zecevic S, Simic-Glavaski B, Yeager E, Lever ABP, Minor PC (1985) J Electroanal Chem 196:339–358

    Article  CAS  Google Scholar 

  66. Manjunatha R, Suresh GS, Melo JS, D’Souza SF, Venkatesha TV (2010) Sensors Actuators B 145:643–650

    Article  CAS  Google Scholar 

  67. Santos CS, Ferreira RT, Calixto CMF, Rufino JL, Garcia JR, Fujiwara ST, Wohnrath K, Pessoa CA (2014) J Appl Electrochem 44:1047–1058

    Article  CAS  Google Scholar 

  68. Shieh Y-T, Lu Y-T, Wang T-L, Yang C-H, Lin R-H (2014) J Solid State Electrochem 18:975–984

    Article  CAS  Google Scholar 

  69. Zuo X, Zhang H, Li N (2012) Sensors Actuators B 161:1074–1079

    Article  CAS  Google Scholar 

  70. Nyokong T (2008) J Porphyrins Phthalocyanines 12:1005–1021

    Article  CAS  Google Scholar 

  71. Zhou Y, Tang W, Wang J, Zhang G, Chai S, Zhang L, Liu T (2014) Anal Methods 6:3474–3481

    Article  CAS  Google Scholar 

  72. Sun W, Yang M, Jiao K (2007) Anal Bioanal Chem 389:1283–1291

    Article  CAS  Google Scholar 

  73. Bard AJ, Faulkner LR (1980) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  74. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  75. Wang C, Xu P, Zhuo K (2014) Electroanalysis 26:191–198

    Article  CAS  Google Scholar 

  76. Yang L, Liu S, Zhang Q, Li F (2012) Talanta 89:136–141

    Article  CAS  Google Scholar 

  77. Min K, Yoo YJ (2009) Talanta 80:1007–1011

    Article  CAS  Google Scholar 

  78. Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2014) Biosens Bioelectron 53:220–224

    Article  CAS  Google Scholar 

  79. Chih Y-K, Yang M-C (2013) Bioelectrochemistry 91:44–51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), and CAPES (Coordenação de Aperfeiçoamento Pessoal de Nível Superior) for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edilson Valmir Benvenutti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deon, M., Caldas, E.M., da Rosa, D.S. et al. Mesoporous silica xerogel modified with bridged ionic silsesquioxane used to immobilize copper tetrasulfonated phthalocyanine applied to electrochemical determination of dopamine. J Solid State Electrochem 19, 2095–2105 (2015). https://doi.org/10.1007/s10008-014-2687-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2687-5

Keywords

Navigation