Skip to main content

Advertisement

Log in

Preparation and characterization of sulfonated polyimide/TiO2 composite membrane for vanadium redox flow battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A sulfonated polyimide (SPI)/TiO2 composite membrane was fabricated by a blend way to improve its performance in vanadium redox flow battery (VRB). Both EDS and XRD results verify the successful preparation of the SPI/TiO2 composite membrane. The surface SEM image shows its homogeneous structure. TG analysis identifies its thermal stability. The SPI/TiO2 composite membrane possesses much lower permeability of VO2+ ions (2.02 × 10−7 cm2 min−1) and favorable proton conductivity (3.12 × 10−2 S cm−1). The VRB single cell with SPI/TiO2 composite membrane shows higher coulombic efficiency (93.80–98.00 %) and energy efficiency (83.20–67.61 %) at the current density ranged from 20 to 80 mA cm−2 compared with that with Nafion 117 membrane. And the operational stability of the as-prepared composite membrane is good after 50 times of cycling tests. Therefore, the low-cost SPI/TiO2 composite membrane with excellent battery performance exhibits a great potential for application in VRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sum E, Skyllas-Kazacos M (1985) A study of the V(II)/V(III) redox couple for redox flow cell applications. J Power Sources 15(2–3):179–190

    Article  CAS  Google Scholar 

  2. Sum E, Rychcik M, Skyllas-kazacos M (1985) Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J Power Sources 16(2):85–95

    Article  CAS  Google Scholar 

  3. Skyllas-Kazacos M, Rychcik M, Robins RG (1986) New all-vanadium redox flow cell. J Electrochem Soc 133(5):1057–1058

    Article  CAS  Google Scholar 

  4. Ge BM, Wang WL, Bi DQ, Rogers CB, Peng FZ (2013) Energy storage system based power control for grid-connected wind power farm. Int J Electr Power Energy Syst 44:115–122

    Article  Google Scholar 

  5. Jia CK, Liu JG, Yan CW (2012) A multilayered membrane for vanadium redox flow battery. J Power Sources 203:190–194

    Article  CAS  Google Scholar 

  6. Tang A, Bao J, Skyllas-Kazacos M (2012) Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery. J Power Sources 216:489–501

    Article  CAS  Google Scholar 

  7. Mohammadi T, Skyllas-Kazacos M (1995) Preparation of sulfonated composite membrane for vanadium redox flow battery applications. J Membr Sci 107:35–45

    Article  CAS  Google Scholar 

  8. Vijayakumar M, Li LY, Graff G, Liu J, Zhang HM, Yang ZG (2011) Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries. J Power Sources 196:3669–3672

    Article  CAS  Google Scholar 

  9. Teng XG, Sun C, Dai JC, Liu HP, Su J (2013) Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application. Electrochim Acta 88:725–734

    Article  CAS  Google Scholar 

  10. Xi JY, Wu ZH, Qiu XP, Chen LQ (2007) Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J Power Sources 166:531–536

    Article  CAS  Google Scholar 

  11. Wang NF, Peng S, Lu D, Liu SQ, Liu YN, Huang KL (2012) Nafion/TiO2 hybrid membrane fabricated via hydrothermal method for vanadium redox battery. J Solid State Electrochem 16:1577–1584

    Article  CAS  Google Scholar 

  12. Wang NF, Peng S, Wang HM, Li YH, Liu SQ, Liu YN (2012) SPPEK/WO3 hybrid membrane fabricated via hydrothermal method for vanadium redox flow battery. Electrochem Commun 17:30–33

    Article  CAS  Google Scholar 

  13. Fujimoto C, Kim S, Stains R, Wei XL, Li LY (2012) Vanadium redox flow battery efficiency and durability studies of sulfonated dielsalder poly (phenylene)s. Electrochem Commun 20:48–51

    Article  CAS  Google Scholar 

  14. Zhang BG, Zhang SH, Xing DB, Han RL, Yin CX, Jian XG (2012) Quaternized poly (phthalazinone ether ketone ketone) anion exchange membrane with low permeability of vanadium ions for vanadium redox flow battery application. J Power Sources 217:296–302

    Article  CAS  Google Scholar 

  15. Ling X, Jia CK, Liu JG, Yan CW (2012) Preparation and characterization of sulfonated poly (ether sulfone)/sulfonated poly (ether ether ketone) blend membrane for vanadium redox flow battery. J Membr Sci 415–416:306–312

    Article  Google Scholar 

  16. Yue MZ, Zhang YP, Wang L (2012) Sulfonated polyimide/chitosan composite membrane for vanadium redox flow battery: influence of the infiltration time with chitosan solution. Solid State Ion 217:6–12

    Article  CAS  Google Scholar 

  17. Yue MZ, Zhang YP, Wang L (2013) Sulfonated Polyimide/chitosan composite membrane for vanadium redox flow battery: membrane preparation, characterization and single cell performance. J Appl Polym Sci 127:4150–4159

    Article  CAS  Google Scholar 

  18. Luisa DVM, Ahmed Z, Bellitto S, Lenci A (2007) SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process. J Membr Sci 296:156–161

    Article  Google Scholar 

  19. Devrim Y, Erkan S, Bac N (2009) Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells. Int J Hydrog Energy 34:3467–3475

    Article  CAS  Google Scholar 

  20. Yue MZ, Zhang YP, Chen Y (2011) Preparation and properties of sulfonated polyimide proton conductive membrane for vanadium redox flow battery. Adv Mater Res 239–242:2779–2784

    Article  Google Scholar 

  21. Teng XG, Zhao YG, Xi JG, Wu ZH, Qiu XP, Chen LQ (2009) Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. J Power Sources 189:1240–1246

    Article  CAS  Google Scholar 

  22. Sone Y, Per E, Daniel S (1996) Proton conductivity of Nafion117 as measured by a four-electrode AC impedance method. J Electrochem Soc 143:1254–1259

    Article  CAS  Google Scholar 

  23. Zhang HZ, Zhang HM, Li XF, Mai ZS, Wei WP, Li Y (2012) Crosslink able sulfonated poly (diallyl-bisphenol ether ether ketone) membranes for vanadium redox flow battery application. J Power Sources 217:309–315

    Article  CAS  Google Scholar 

  24. Luo QT, Li LY, Nie ZM, Wang W, Wei XL, Li B, Chen BW (2012) In-situ investigation of vanadium ion transport in redox flow battery. J Power Sources 218:15–20

    Article  CAS  Google Scholar 

  25. Zhang WG, Xi JY, Li ZH, Zhou HP, Liu L, Wu ZH, Qiu XP (2013) Electrochemical activation of graphite felt electrode for VO2+/VO2 + redox couple application. Electrochim Acta 89:429–435

    Article  CAS  Google Scholar 

  26. Pourjafar S, Rahimpour A, Jahanshahi M (2012) Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO2 nanoparticles for better performance and surface properties. J Ind Eng Chem 18:1398–1405

    Article  CAS  Google Scholar 

  27. Yang CC (2007) Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr Sci 288:51–60

    Article  CAS  Google Scholar 

  28. Geng L, He Y, Liu D, Dai X, Lü CL (2012) Facile in situ template synthesis of sulfonated polyimide/mesoporous silica hybrid proton exchange membrane for direct methanol fuel cells. Microporous Mesoporous Mater 148:8–14

    Article  CAS  Google Scholar 

  29. Maldonado L, Perrin JC, Dillet J, Lottin O (2012) Characterization of polymer electrolyte Nafion membranes: influence of temperature, heat treatment and drying protocol on sorption and transport properties. J Membr Sci 389:43–56

    Article  CAS  Google Scholar 

  30. Mohammadi T, Skyllas-Kazacos M (1995) Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications. J Power Sources 56:91–96

    Article  CAS  Google Scholar 

  31. Luo QT, Zhang HM, Chen J, You DJ, Sun CX, Zhang Y (2008) Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. J Membr Sci 325:553–558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from National Natural Scientific Foundation of China (no. 21206138), Key Fund Project of Sichuan Provincial Department of Education (no. 12ZA181), and Graduates' Innovation Fund of Southwest University of Science and Technology (no. 13ycjj14) are greatly appreciated. Our deepest gratitude also goes to Dr. Bengui Zhang at Shenyang University of Chemical Technology for his kind help in VRB tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zhang, Y. & Wang, L. Preparation and characterization of sulfonated polyimide/TiO2 composite membrane for vanadium redox flow battery. J Solid State Electrochem 18, 729–737 (2014). https://doi.org/10.1007/s10008-013-2309-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2309-7

Keywords

Navigation