Skip to main content
Log in

Electrodes modified with iron porphyrin and carbon nanotubes: application to CO2 reduction and mechanism of synergistic electrocatalysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodes modified with iron porphyrin and carbon nanotubes (FeP–CNTs) were prepared and used for CO2 electroreduction. The adsorption of iron porphyrin onto the multiwalled carbon nanotubes was characterized by scanning electron microscopy and ultraviolet and visible spectroscopy. The electrochemical properties of the modified electrodes for CO2 reduction were investigated by cyclic voltammetry and CO2 electrolysis. The FeP–CNT electrodes exhibited less negative cathode potential and higher reaction rate than the electrodes modified only with iron porphyrin or carbon nanotubes. A mechanism of the synergistic catalysis was proposed and studied by electrochemical impedance spectroscopy and electron paramagnetic resonance. The direct electron transfer between iron porphyrin and carbon nanotubes was examined. The current study shed light on the mechanism of synergistic catalysis between CNTs and metalloporphyrin, and the iron porphyrin–CNT-modified electrodes showed great potential in the efficient CO2 electroreduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Sun JJ, Zhao HZ, Yang QZ, Song J, Xue A (2010) A novel layer-by-layer self-assembled carbon nanotube-based anode: preparation, characterization, and application in microbial fuel cell. Electrochim Acta 55(9):3041–3047

    Article  CAS  Google Scholar 

  2. Qiao Y, Li CM (2011) Nanostructured catalysts in fuel cells. J Mater Chem 21(12):4027–4036

    Article  CAS  Google Scholar 

  3. Murakami H, Nomura T, Nakashima N (2003) Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem Phys Lett 378(5–6):481–485

    Article  CAS  Google Scholar 

  4. Zhao Q, Gu ZN, Zhuang QK (2004) Electrochemical study of tetra-phenyl-porphyrin on the SWNTs film modified glassy carbon electrode. Electrochem Commun 6(1):83–86

    Article  CAS  Google Scholar 

  5. Kowalewska B, Skunik M, Karnicka K, Miecmikowski K, Chojak M, Ginalska G, Belcarz A, Kulesza PJ (2008) Enhancement of bio-electrocatalytic oxygen reduction at the composite film of cobalt porphyrin immobilized within the carbon nanotube-supported peroxidase enzyme. Electrochim Acta 53(5):2408–2415

    Article  CAS  Google Scholar 

  6. Choi A, Jeong H, Kim S, Jo S, Jeon S (2008) Electrocatalytic reduction of dioxygen by cobalt porphyrin-modified glassy carbon electrode with single-walled carbon nanotubes and nafion in aqueous solutions. Electrochim Acta 53(5):2579–2584

    Article  CAS  Google Scholar 

  7. Liu Y, Yan YL, Lei HP, Wu F, Ju HX (2007) Functional multiwalled carbon nanotube nanocomposite with iron picket-fence porphyrin and its electrocatalytic behavior. Electrochem Commun 9(10):2564–2570

    Article  CAS  Google Scholar 

  8. Ma QA, Ai SY, Yin HS, Chen QP, Tang TT (2010) Towards the conception of an amperometric sensor of l-tyrosine based on Hemin/PAMAM/MWCNT modified glassy carbon electrode. Electrochim Acta 55(22):6687–6694

    Article  CAS  Google Scholar 

  9. Penza M, Rossi R, Alvisi M, Valerini D, Serra E, Paolesse R, Martinelli E, D'Amico A, Di Natale C (2011) Metalloporphyrin-modified carbon nanotube layers for gas microsensors. Sens Lett 9(2):913–919

    Article  CAS  Google Scholar 

  10. Luz RCS, Damos FS, Tanaka AA, Kubota LT, Gushikem Y (2008) Electrocatalysis of reduced L-glutathione oxidation by iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) adsorbed on multi-walled carbon nanotubes. Talanta 76(5):1097–1104

    Article  CAS  Google Scholar 

  11. Chen W, Ding Y, Akhigbe J, Bruckner C, Li CM, Lei Y (2010) Enhanced electrochemical oxygen reduction-based glucose sensing using glucose oxidase on nanodendritic poly[meso-tetrakis(2-thienyl)porphyrinato]cobalt(II)-SWNTs composite electrodes. Biosens Bioelectron 26(2):504–510

    Article  CAS  Google Scholar 

  12. Rahman GMA, Guldi DM, Campidelli S, Prato M (2006) Electronically interacting single wall carbon nanotube-porphyrin nanohybrids. J Mater Chem 16(1):62–65

    Article  CAS  Google Scholar 

  13. Murakami H, Nakamura G, Nomura T, Miyamoto T, Nakashima N (2007) Noncovalent porphyrin-functionalized single-walled carbon nanotubes: solubilization and spectral behaviors. J Porphyrins Phthalocyanines 11(5–6):418–427

    Article  CAS  Google Scholar 

  14. Chitta R, Sandanayaka ASD, Schumacher AL, D'Souza L, Araki Y, Ito O, D'Souza F (2007) Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer. J Phys Chem C 111(19):6947–6955

    Article  CAS  Google Scholar 

  15. Hasobe T, Murata H, Kamat PV (2007) Photoelectrochemistry of stacked-cup carbon nanotube films. Tube-length dependence and charge transfer with excited porphyrin. J Phys Chem C 111(44):16626–16634

    Article  CAS  Google Scholar 

  16. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38(1):89–99

    Article  CAS  Google Scholar 

  17. Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. Chemsuschem 1(5):385–391

    Article  CAS  Google Scholar 

  18. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42(12):1983–1994

    Article  CAS  Google Scholar 

  19. Behar D, Dhanasekaran T, Neta P, Hosten CM, Ejeh D, Hambright P, Fujita E (1998) Cobalt porphyrin catalyzed reduction of CO2. Radiation chemical, photochemical, and electrochemical studies. J Phys Chem A 102(17):2870–2877

    Article  CAS  Google Scholar 

  20. Magdesieva TV, Yamamoto T, Tryk DA, Fujishima A (2002) Electrochemical reduction of CO2 with transition metal phthalocyanine and porphyrin complexes supported on activated carbon fibers. J Electrochem Soc 149(6):D89–D95

    Article  CAS  Google Scholar 

  21. Ramirez G, Lucero M, Riquelme A, Villagran M, Costamagna J, Trollund E, Aguirre MJ (2004) A supramolecular cobalt-porphyrin-modified electrode, toward the electroreduction of CO2. J Coord Chem 57(3):249–255

    Article  CAS  Google Scholar 

  22. Bhugun I, Lexa D, Savéant JM (1996) Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of Lewis acid cations. J Phys Chem 100(51):19981–19985

    Article  CAS  Google Scholar 

  23. Fujiwara ST, Gushikem Y, Pessoa CA, Nakagaki S (2005) Electrochemical studies of a new iron porphyrin entrapped in a propylpyridiniumsilsesquioxane polymer immobilized on a SiO2/Al2O3 surface. Electroanalysis 17(9):783–788

    Article  CAS  Google Scholar 

  24. Yang YB, Xu L, Li FY, Du XG, Sun ZX (2010) Enhanced photovoltaic response by incorporating polyoxometalate into a phthalocyanine-sensitized electrode. J Mater Chem 20(48):10835–10840

    Article  CAS  Google Scholar 

  25. Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N, Nyokong T (2010) Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim Acta 55(22):6367–6375

    Article  CAS  Google Scholar 

  26. Liu XQ, Feng HQ, Liu XH, Wong DKY (2011) Electrocatalytic detection of phenolic estrogenic compounds at NiTPPS vertical bar carbon nanotube composite electrodes. Anal Chim Acta 689(2):212–218

    Article  CAS  Google Scholar 

  27. Zhao HZ, Zhang Y, Zhao B, Chang YY, Li ZS (2012) Electrochemical Reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode. Environ Sci Technol 46(9):5198–5204

    Article  CAS  Google Scholar 

  28. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105(31):10654–10658

    Article  CAS  Google Scholar 

  29. Lu XQ, Zhi FP, Shang H, Wang XY, Xue ZH (2010) Investigation of the electrochemical behavior of multilayers film assembled porphyrin/gold nanoparticles on gold electrode. Electrochim Acta 55(11):3634–3642

    Article  CAS  Google Scholar 

  30. Li XF, Wan Y, Sun CQ (2004) Covalent modification of a glassy carbon surface by electrochemical oxidation of r-aminobenzene sulfonic acid in aqueous solution. J Electroanal Chem 569(1):79–87

    Article  CAS  Google Scholar 

  31. Xiao F, Liu LQ, Li J, Zeng JJ, Zeng BZ (2008) Electrocatalytic oxidation and voltammetric determination of nitrite on hydrophobic ionic liquid-carbon nanotube gel-chitosan composite modified electrodes. Electroanalysis 20(18):2047–2054

    Article  CAS  Google Scholar 

  32. Cambré S, Wenseleers W, Goovaerts E, Resasco DE (2010) Determination of the metallic/semiconducting ratio in bulk single-wall carbon nanotube samples by cobalt porphyrin probe electron paramagnetic resonance spectroscopy. ACS Nano 4(11):6717–6724

    Article  Google Scholar 

  33. Elliott RJ (1954) Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev 96(2):266–279

    Article  CAS  Google Scholar 

  34. Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228(5273):726–734

    Article  CAS  Google Scholar 

  35. Hoard JL (1971) Stereochemistry of hemes and other metalloporphyrins. Science 174(4016):1295–1302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation (grant no. 21077001) and National Five-Year Technology Support Program (grant no. 2011BAJ07B04) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Zhang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, HZ., Chang, YY. & Liu, C. Electrodes modified with iron porphyrin and carbon nanotubes: application to CO2 reduction and mechanism of synergistic electrocatalysis. J Solid State Electrochem 17, 1657–1664 (2013). https://doi.org/10.1007/s10008-013-2027-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2027-1

Keywords

Navigation