Skip to main content
Log in

Hierarchical mesoporous carbon materials: preparation by direct tri-constituent co-assembly and the electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hierarchical mesoporous carbon materials with large microporosity were prepared by direct tri-constituent co-assembly with the use of resols as the carbon precursor, tetraethyl orthosilicate as the inorganic precursor, and triblock copolymer F127 as the soft template. Bimodal pore size distributions in the range of 1.5–4 and 7.5–12 nm were obtained in the synthesized hierarchical mesoporous carbon materials after etching of silica by HF acid, showing a high surface area of 1,675 m2 g−1 with a large pore volume of 2.06 cm3 g−1. The electrochemical performance of the hierarchical mesoporous carbons was evaluated as an electrode material for electrochemical supercapacitor, showing a specific capacitance as high as 152 F g−1 at a scan rate of 5 mV s−1 in 6 M KOH aqueous solution and a good cycling stability with capacitance retention of 99 % over 500 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical capacitors: scientific fundamentals and technological applications. Kluwer Academic, New York

    Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nature Mater 7:845–857

    Article  CAS  Google Scholar 

  3. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  4. Gryglewicz G, Machnikowski J, Lorenc-Grabowska E, Lota G, Frackowiak E (2005) Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochim Acta 50:1197–1206

    Article  CAS  Google Scholar 

  5. Kyotani T, Ma Z, Tomita A (2003) Template synthesis of novel porous carbons using various types of zeolites. Carbon 41:1451–1459

    Article  CAS  Google Scholar 

  6. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbons. Adv Mater 13:13677–13681

    Article  Google Scholar 

  7. Zhang FQ, Meng Y, Gu D, Yan Y, Yu CZ, Tu B, Zhao DY (2005) A facile aqueous route synthesize ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. J Am Chem Soc 127:13508–13509

    Article  CAS  Google Scholar 

  8. Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem Commun :2125–2127

  9. Meng Y, Gu D, Zhang FQ, Shi YF, Cheng L, Feng D, Wu ZX, Chen ZX, Wan Y, Stein A, Zhao DY (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic–organic self-assembly. Chem Mater 18:4447–4464

    Article  CAS  Google Scholar 

  10. Liu L, Wang FY, Shao GS, Ma TY, Yuan ZY (2010) Synthesis of ultra-large mesoporous carbons from triblock copolymers and phloroglucinol/formaldehyde polymer. Carbon 48:2660–2664

    Article  CAS  Google Scholar 

  11. Hu Q, Kou R, Pang J, Ward TL, Cai M, Yang Z, Lu Y, Tang J (2007) Mesoporous carbon/silica nanocomposite particles through aerosol-assisted multi-component assembly. Chem Commun :601–603

  12. Liu RL, Shi YF, Wan Y, Meng Y, Zhang FQ, Gu D, Tu B, Zhao D (2006) Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon–silica nanocomposites and large-pore mesoporous carbons with high surface areas. J Am Chem Soc 128:11652–11662

    Article  CAS  Google Scholar 

  13. Gao W, Wan Y, Dou Y, Zhao D (2011) Synthesis of partially graphitic ordered mesoporous carbons with high surface areas. Adv Energy Mater 1:115–123

    Article  CAS  Google Scholar 

  14. Li HQ, Liu RL, Zhao DY, Xia YY (2007) Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 45:2628–2635

    Article  CAS  Google Scholar 

  15. Yuan ZY, Su BL (2003) Surfactant-assisted nanoparticle assembly of mesoporous β-FeOOH (akaganeite). Chem Phys Lett 381:710–714

    Article  CAS  Google Scholar 

  16. Ren TZ, Yuan ZY, Su BL (2003) Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chem Phys Lett 374:170–175

    Article  CAS  Google Scholar 

  17. Zhai Y, Dou Y, Liu X, Park SS, Ha CS, Zhao D (2011) Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. Carbon 49:545–555

    Article  CAS  Google Scholar 

  18. Gao P, Wang A, Wang X, Zhang T (2008) Synthesis of highly ordered Ir-containing mesoporous carbon materials by organic–organic self-assembly. Chem Mater 20:1881–1888

    Article  CAS  Google Scholar 

  19. Liu L, Wang FY, Shao GS, Yuan ZY (2010) A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure. Carbon 48:2089–2099

    Article  CAS  Google Scholar 

  20. Xia KS, Gao QM, Jiang JH, Hu J (2008) Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46:1718–1726

    Article  CAS  Google Scholar 

  21. Liu HJ, Cui WJ, Jin LH, Wang CX, Xia YY (2009) Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. J Mater Chem 19:3661–3667

    Article  CAS  Google Scholar 

  22. Zhao XC, Wang AQ, Yan JW, Sun JQ, Sun LX, Zhang T (2010) Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem Mater 22:5463–5473

    Article  CAS  Google Scholar 

  23. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44:216–224

    Article  CAS  Google Scholar 

  24. Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49:905–912

    Article  CAS  Google Scholar 

  25. Arulepp M, Permann L, Leis J, Perkson A, Rumma K, Janes A, Lust E (2004) Influence of the solvent properties on the characteristics of a double layer capacitor. J Power Sources 133:320–328

    Article  CAS  Google Scholar 

  26. Janes A, Lust E (2005) Organic carbonate–organic ester-based non-aqueous electrolytes for electrical double layer capacitors. Electrochem Commun 7:510–514

    Article  Google Scholar 

  27. Yoon S, Lee J, Hyeon T, Oh SM (2000) Electric double-layer capacitor performance of a new mesoporous carbon. J Electrochem Soc 147:2507–2512

    Article  CAS  Google Scholar 

  28. Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  29. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925

    Article  CAS  Google Scholar 

  30. Chen WC, Wen TC, Teng H (2003) Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim Acta 48:641–649

    Article  CAS  Google Scholar 

  31. Lei ZB, Christov N (2011) Mesoporous carbon nanospheres with an excellent electrocapacitive performance. J Mater Chem 21:2274–2281

    Article  CAS  Google Scholar 

  32. Zhu YD, Hu HQ, Li WC, Zhang XY (2007) Resorcinol–formaldehyde based porous carbon as an electrode material for supercapacitors. Carbon 45:160–165

    Article  CAS  Google Scholar 

  33. Carriazo D, Picó F, Gutiíerrez MC, Rubio F, Rojoa JM, del Monte F (2010) Block-copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. J Mater Chem 20:773–780

    Article  CAS  Google Scholar 

  34. Ruiz V, Blanco C, Santamaría R, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) An activated carbon monolith as an electrode material for supercapacitors. Carbon 47:195–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20973096, 21076056), the National Basic Research Program of China (2009CB623502), the Key Project of Chinese Ministry of Education (2100016), the Specialized Research Fund for the Doctoral Program of Higher Education (20091317120005, 20110031110016), and the 111 Project (B12015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yong Yuan.

Additional information

Tie-Zhen Ren and Lei Liu have made an equal contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, TZ., Liu, L., Zhang, Y. et al. Hierarchical mesoporous carbon materials: preparation by direct tri-constituent co-assembly and the electrochemical performance. J Solid State Electrochem 17, 927–935 (2013). https://doi.org/10.1007/s10008-012-1947-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1947-5

Keywords

Navigation