Skip to main content
Log in

Sucrose assisted hydrothermal synthesis of SnO2/graphene nanocomposites with improved lithium storage properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

SnO2/graphene nanocomposites are synthesized by a new hydrothermal treatment strategy under the assistance of sucrose. From the images of the scanning electron microscope (SEM) and transmission electron microscope (TEM), it can be observed that SnO2 nanoparticles with the size of 4~5 nm uniformly distribute on the graphene nanosheets. The result demonstrates that sucrose can effectively prevent graphene nanosheets from restacking during hydrothermal treatment and subsequently treatment. The charging/discharging test result indicates that the SnO2/graphene nanocomposites exhibit high specific capacity and excellent cycleability. The first reversible specific capacity is 729 mAh.g−1 at the current density of 50 mA.g−1, and remains 646 mAh.g−1 after 30 cycles at the current density of 100 mA.g−1, 30 cycles at the current density of 200 mA.g−1, 30 cycles at the current density of 400 mA.g−1, 30 cycles at the current density of 800 mA.g−1, and 30 cycles at the current density of 50 mA.g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Scrosati B, Hassoun J, Sun YK (2011) Energy Environ Sci 4:3287–3295

    Article  CAS  Google Scholar 

  3. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395–1397

    Article  CAS  Google Scholar 

  4. Winter M, Besenhard JO (1999) Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  5. Zhang WJ (2011) J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  6. Brousse T, Retoux R, Herterich U, Schleich DM (1998) J Electrochem Soc 145:1–4

    Article  CAS  Google Scholar 

  7. Wang Y, Zeng HC, Lee JY (2006) Adv Mater 18:645–649

    Article  CAS  Google Scholar 

  8. Yang HX, Qian JF, Chen ZX, Ai XP, Cao YL (2007) J Phys Chem C 111:14067–14071

    Article  CAS  Google Scholar 

  9. Ma JM, Zhang J, Wang SR, Wang QH, Jiao LF, Yang JQ, Duan XC, Liu ZF, Lian JB, Zheng WJ (2011) CrystEngComm 13:6077–6081

    Article  CAS  Google Scholar 

  10. Park MS, Wang GX, Kang YM, Wexler D, Dou SX, Liu HK (2007) Angew Chem Int Ed 46:750–753

    Article  CAS  Google Scholar 

  11. Yin XM, Chen LB, Li CC, Hao QY, Liu SA, Li QH, Zhang ED, Wang TH (2011) Electrochim Acta 56:2358–2363

    Article  CAS  Google Scholar 

  12. Wen ZH, Wang Q, Zhang Q, Li JH (2007) Adv Funct Mater 17:2772–2778

    Article  CAS  Google Scholar 

  13. Wang Y, Lee JY, Zeng HC (2005) Chem Mater 17:3899–3903

    Article  CAS  Google Scholar 

  14. Wang JZ, Du N, Zhang H, Yu JX, Yang DR (2011) J Phys Chem C 115:11302–11305

    Article  CAS  Google Scholar 

  15. Moon T, Kim CJ, Hwang ST, Park B (2006) Electrochem Solid State Lett 9:A408–A411

    Article  CAS  Google Scholar 

  16. Selvan RK, Perelshtein IPN, Gedanken A (2008) J Phys Chem C 112:1825–1830

    Article  CAS  Google Scholar 

  17. Du GD, Zhong C, Zhang P, Guo ZP, Chen ZX, Liu HK (2010) Electrochim Acta 55:2582–2586

    Article  CAS  Google Scholar 

  18. Zhang HX, Feng C, Zhai YC, Jiang KL, Li QQ, Fan SS (2009) Adv Mater 21:2299–2304

    Article  CAS  Google Scholar 

  19. Zhang CF, Quince M, Chen ZX, Guo ZP, Liu HK (2011) J Solid State Electrochem 15:2645–2652

    Article  CAS  Google Scholar 

  20. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Adv Mater 19:2336–2340

    Article  CAS  Google Scholar 

  21. Wang J, Li DL, Fan XY, Gou L, Wang JJ, Li Y, Lu XT, Li Q (2012) J Alloys Comp 516:33–37

    Article  CAS  Google Scholar 

  22. Tong X, Wang H, Wang G, Wan LJ, Ren ZY, Bai JT, Bai JB (2011) J Solid State Chem 184:982–989

    Article  CAS  Google Scholar 

  23. Wei T, Wang FY, Yan J, Cheng J, Fan ZJ, Song HH (2011) J Electroanal Chem 653:45–49

    Article  CAS  Google Scholar 

  24. Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman BD (2010) J Am Chem Soc 132:12556–12558

    Article  CAS  Google Scholar 

  25. Uthaisar C, Barone V (2010) Nano Lett 10:2838–2842

    Article  CAS  Google Scholar 

  26. Abouimrane A, Compton OC, Amine K, Nguyen ST (2010) J Phys Chem C 114:12800–12804

    Article  CAS  Google Scholar 

  27. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2010) Electrochim Acta 55:3909–3914

    Article  CAS  Google Scholar 

  28. Wang CY, Li D, Too CO, Wallace GG (2009) Chem Mater 21:2604–2606

    Article  CAS  Google Scholar 

  29. Guo P, Song HH, Chen XH (2009) Electrochem Commun 11:1320–1324

    Article  CAS  Google Scholar 

  30. Wang GX, Shen XP, Yao J, Park J (2009) Carbon 47:2049–2053

    Article  CAS  Google Scholar 

  31. Yoo EJ, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Nano Lett 8:2277–2282

    Article  CAS  Google Scholar 

  32. Pan DY, Wang S, Zhao B, Wu MH, Zhang HJ, Wang Y, Jiao Z (2009) Chem Mater 21:3136–3142

    Article  CAS  Google Scholar 

  33. Martin P (2011) Energy Environ Sci 4:668–674

    Article  Google Scholar 

  34. Wang B, Wang Y, Park J, Ahn H, Wang GX (2011) J Alloys Comp 509:7778–7783

    Article  CAS  Google Scholar 

  35. Kim H, Seo DH, Kim SW, Kim J, Kang K (2011) Carbon 49:326–332

    Article  CAS  Google Scholar 

  36. Zhu XJ, Zhu YW, Murali S, Stoller MD, Ruoff RS (2011) ASC NANO 5:3333–3338

    Article  CAS  Google Scholar 

  37. Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, Wen L, Lu GQ (M), Cheng HM (2010) Chem Mater 22:5306-5313

    Article  CAS  Google Scholar 

  38. Yao J, Shen XP, Wang B, Liu HK, Wang GX (2009) Electrochem Commun 11:1849–1852

    Article  CAS  Google Scholar 

  39. Zhu XJ, Zhu YW, Murali S, Stoller MD, Ruoff RS (2011) J Power Sources 196:6473–6477

    Article  CAS  Google Scholar 

  40. Ding SJ, Luan DY, Boey FYC, Chen JS, Lou XW(D) (2011) Chem Commun 47:7155–7157

    Article  CAS  Google Scholar 

  41. Wang DH, Kou R, Choi D, Yang ZG, Nie ZM, Li J, Saraf LV, Hu DH, Zhang JG, Graff GL, Liu J, Pope MAand Aksay IA (2010) ASC NANO 4:1587–1595

    Article  CAS  Google Scholar 

  42. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2011) Electrochim Acta 56:4532–4539

    Article  CAS  Google Scholar 

  43. Kim H, Kim SW, Park YU, Gwon H, Seo DH, Kim Y, Kang K (2010) Nano Res 3:813–821

    Article  CAS  Google Scholar 

  44. Li YM, Lv XJ, Lu J, Li JH (2010) J Phys Chem C 114:21770–21774

    Article  CAS  Google Scholar 

  45. Zhang M, Lei DN, Du ZF, Yin XM, Chen LB, Li QH, Wang YG, Wang TH (2011) J Mater Chem 21:1673–1676

    Article  CAS  Google Scholar 

  46. Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, Guo YG, Wan LJ (2010) J Mater Chem 20:5462–5467

    Article  CAS  Google Scholar 

  47. Paek SM, Yoo EJ, Honma I (2009) Nano Lett 9:72–75

    Article  CAS  Google Scholar 

  48. Chen ZX, Zhou M, Cao YL, Ai XP, Yang HX, Liu J (2012) Adv Energy Mater 2:95–102

    Article  CAS  Google Scholar 

  49. Li BJ, Cao HQ, Zhang JX, Qu MZ, Lian F, Kong XH (2012) J Mater Chem 22:2851–2854

    Article  CAS  Google Scholar 

  50. Li Y, Zhu SM, Liu QL, Gu JJ, Guo ZP, Chen ZX, Feng CL, Zhang D, Moon WJ (2012) J Mater Chem 22:2766–2773

    Article  CAS  Google Scholar 

  51. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  52. Huang NM, Lim HN, Radiman S, Khiew PS, Chiu WS, Hashim R, Chi CH (2010) Colloids Surf 353:69–76

    Article  CAS  Google Scholar 

  53. Sun XH, Zheng CM, Zhang FX, Yang YL, Wu GJ, Yu AM, Guan NJ (2009) J Phys Chem C 113:16002–16008

    Article  CAS  Google Scholar 

  54. Jiang W, Zhang XJ, Sun ZD, Fang Y, Li FS, Chen K, Huang CX (2011) J Magn Magn Mater 323:2741–2747

    Article  CAS  Google Scholar 

  55. Wang GX, Wang B, Wang XL, Park J, Dou SX, Ahn H, Kim K (2009) J Mater Chem 19:8378–8384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant No.20903016), Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 708084), National Natural Science Foundation of China (Grant No. 21073021), the Special Fund for Basic scientific Research of Central Colleges, Chang’an University, (Grant No. CHD2010JC006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yong Fan or Dong-Lin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, XY., Shi, XY., Wang, J. et al. Sucrose assisted hydrothermal synthesis of SnO2/graphene nanocomposites with improved lithium storage properties. J Solid State Electrochem 17, 201–208 (2013). https://doi.org/10.1007/s10008-012-1871-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1871-8

Keywords

Navigation