Skip to main content
Log in

Kinetics of adsorption of poly(vinylimidazole) (PVI) onto copper surfaces investigated by quartz crystal microbalance studies

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Organic corrosion inhibitors offer a huge potential of lowering product cost and manufacturing complexity in printed circuit board industry. Up to now, there is no reliable and fast method available to classify materials according to their ability to prevent copper from corrosion based on kinetic data of adsorption. We investigated the potential of the recently presented fast impedance-scanning quartz microbalance (FIS-QCM) to perform such studies. We selected poly(vinylimidazole) (PVI) that is known for its excellent ability to prevent copper from corrosion. However, kinetics and free energy of adsorption of PVI were never investigated. This paper presents the results of these studies. Reliable kinetic data were obtained, and the measurements show also the excellent frequency stability of this device that enables the detection of very small changes in resonance behaviour of the sensor quartz crystal, even below 1 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antonijevic MM, Petrovic MB (2008) Int J Electrochem Sci 3:1–28

    CAS  Google Scholar 

  2. Chieb T, Belmokre K, Benmessaoud M, El Hassane Drissi S, Hajjaji N, Srhiri A (2011) Mater Sci Appl 2:1260–1267

    CAS  Google Scholar 

  3. Antonijevic MM, Milic SM, Serbula SM, Bogdanovic GD (2005) Electrochim Acta 50:3693–3701

    Article  CAS  Google Scholar 

  4. Munoz AI, Anton JG, Guinon JL, Herranz VP (2004) Electrochim Acta 50:957–966

    Article  CAS  Google Scholar 

  5. Zhang DQ, Gao LX, Zhou GD (2003) J Appl Electrochem 33:361–366

    Article  CAS  Google Scholar 

  6. Lalitha A, Ramesh S, Rajeswari S (2005) Electrochim Acta 51:47–55

    Article  CAS  Google Scholar 

  7. Qafsaoui W, Blanc C, Pebere N, Takenouti H, Srhiri A, Mankowski G (2002) Electrochim Acta 47:4339–4346

    Article  CAS  Google Scholar 

  8. Abdullah AM, Al-Kharafi FM, Ateya BG (2006) Scripta Mater 54:1673–1677

    Article  CAS  Google Scholar 

  9. Finsgar M, Milosev I (2010) Corros Sci 52:2737–2749

    Article  CAS  Google Scholar 

  10. Eng FP, Ishida H (1986) J Mater Sci 21:1561–1568

    Article  CAS  Google Scholar 

  11. Ishida H, Johnson R (1986) Corros Sci 26:657–667

    Article  CAS  Google Scholar 

  12. Vianco PT (1999) Circ World 25:6–24

    Article  Google Scholar 

  13. Eng FP, Ishida H (1986) J Appl Polym Sci 32:5021–5034

    Article  CAS  Google Scholar 

  14. Xue G, Lu Y, Shi G (1994) Appl Surf Sci 74:37–41

    Article  CAS  Google Scholar 

  15. Murata A, Shimada T (1990) US patent no. 4,894,752

  16. Abbott D, Moehle PR (2001) US patent no. 6,194,777

  17. Chang CA, Koopman NG, Roldan JM, Strickman S, Srivastava K, Yeh HL (1991) US patent no. 5,048,744

  18. Takahashi S, Masukawa S, Futatsuka R, Sugimoto T, Suzuki T, Azuma C, Kanda Y, Fukatami T (1996) US patent no. 5,510,197

  19. Ramsey TH, Alfaro RC (1995) US patent no. 5,455,195

  20. Yang JC, Lee KC, Tan AC (1999) Proceedings of 49th electronic components and technology conference, San Diego, CA, 1–4 June, pp. 842–847

  21. Whelan CM, Kinsella M, Ho HM, Maex K (2004) J Electrochem Soc 151:B33–B38

    Article  CAS  Google Scholar 

  22. Ho HM, Lam W, Stoukatch S, Ratchev P, Vath CJ, Beyne E (2003) Microelectron Reliab 43:913–923

    Article  CAS  Google Scholar 

  23. Breach CD, Wulff F (2004) Microelectron Reliab 44:973–981

    Article  CAS  Google Scholar 

  24. Romm D, Lange B, Donald A (2001) Texas instruments application report SZZA026 July 2001. Available at: http://www.ti.com/lit/an/szza026/szza026.pdf

  25. Abbott D, Romm D, Lange B (2001) Texas Instruments Application Report SZZA031 December 2001. Available at: http://www.ti.com/lit/an/szza031/szza031.pdf

  26. Peeters P, Hoorn G, Daenen T, Kurowski A, Staikov G (2001) Electrochim Acta 47:161–169

    Article  CAS  Google Scholar 

  27. Wudy F, Multerer M, Stock C, Schmeer G, Gores HJ (2008) Electrochim Acta 53:6568–6574

    Article  CAS  Google Scholar 

  28. Song S-W, Richardson TJ, Zhuang GV, Devine TM, Evans JW (2004) Electrochim Acta 49:1483–1490

    CAS  Google Scholar 

  29. Bund A, Schneider M (2002) J Electrochem Soc 149:E331–E339

    Article  CAS  Google Scholar 

  30. Bund A, Ispas A (2005) J Electroanal Chem 575:221–228

    Article  CAS  Google Scholar 

  31. Bates RG (1976) Pure Appl Chem 45:81–97

    Article  Google Scholar 

  32. Janshoff A, Steinem C (2001) Sens Update 9:313–354

    Article  CAS  Google Scholar 

  33. Peipmann R, Thomas J, Bund A (2007) Electrochim Acta 52:5808–5814

    Article  CAS  Google Scholar 

  34. Bund A, Baba A, Berg S, Johannsmann D, Lubben J, Wang Z, Knoll W (2003) J Phys Chem B 107:6743–6747

    Article  CAS  Google Scholar 

  35. Multerer M (2007) Untersuchung an Elektrolyten für Lithium-Ionen-Zellen sowie Entwicklung und Test eines computergesteuerten, modular aufgebauten, elektochemischen Messsystems mit Quarzmikrowaage. Dissertation, Universität Regensburg

  36. Lodermeyer J, Multerer M, Zistler M, Jordan S, Gores HJ, Kipferl W, Diaconu E, Sperl M, Bayreuther GJ (2006) Electrochem Soc 153:C242–C248

    Article  CAS  Google Scholar 

  37. Lodermeyer J (2006) Elektrochemische Abscheidung von Metallen und Legierungen aus nichtwässrigen Systemen und Aktivierung von passivierten Metalloberflächen zur Abscheidung nanoporöser Schichten aus wässrigen Lösungen. Dissertation, Universität Regensburg

  38. Moosbauer D, Zugmann S, Amereller M, Gores HJ (2010) J Chem Eng Data 55:1794–1798

    Article  CAS  Google Scholar 

  39. Gores HJ, Barthel J, Zugmann S, Moosbauer D, Amereller M, Hartl R, Maurer A (2011) In: Daniel C (ed) Handbook of battery materials, Ch. 17, 2nd edn. Wiley, Weinheim, pp 525–626

    Chapter  Google Scholar 

  40. Wudy F, Schedlbauer T, Stock C, Gores HJ (2009) Acta Chim Slov 56:65–69

    CAS  Google Scholar 

  41. Fonsati M, Zucchi F, Trabanelli G (1998) Electrochim Acta 44:311–322

    Article  CAS  Google Scholar 

  42. Doblhofer K, Weil KG (2007) Bunsenges Mag 9:162–172

    Google Scholar 

  43. Simbeck T, Thomaier S, Stock C, Riedl E, Gores HJ (2011) Electrochem Commun 13:803–805

    Article  CAS  Google Scholar 

  44. Milic SM, Antonijevic MM (2009) Corros Sci 51:28–34

    Article  CAS  Google Scholar 

  45. Macci EM, Piatti RCV, Podesta JJ (1993) Rev Tec Ing Univ Zulia 16:101–109

    Google Scholar 

  46. Karpovich DS, Blanchard GJ (1994) Langmuir 10:3315–3322

    Article  CAS  Google Scholar 

  47. Babic R, Metikos-Hukovic M, Loncar M (1999) Electrochim Acta 44:2413–2421

    Article  CAS  Google Scholar 

  48. Tizpar A, Ghasemi Z (2006) Appl Surf Sci 252:8630–8634

    Article  CAS  Google Scholar 

  49. Sauerbrey G (1959) Z Phys 155:206–222

    Article  CAS  Google Scholar 

  50. Doblhofer K, Wasle S, Soares DM, Weil KG, Ertl G (2003) J Electrochem Soc 150:C657–C664

    Article  CAS  Google Scholar 

  51. Hillman AR (2011) J Solid State Electrochem 15:1647–1660

    Article  CAS  Google Scholar 

  52. Öncül A, Coban K, Sezer E, Senkal BF (2011) Prog Org Coat 71:167–172

    Article  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Professor Waldfried Plieth in celebration of Professor Waldfried Plieth’s 75th Birthday on 7th November 2012. One of us (HJG) cordially thanks Professor Waldfried Plieth for his interest in and support of his work in several fields of electrochemistry and physical chemistry during many years. Financial support from the German Research Foundation (DFG), contract number 544243 (Project Initiative PAK 177 “Funktionsmaterialien und Materialanalytik zu Lithium-Hochleistungsbatterien”) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Jakob Gores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simbeck, T., Hammer, M.M., Thomaier, S. et al. Kinetics of adsorption of poly(vinylimidazole) (PVI) onto copper surfaces investigated by quartz crystal microbalance studies. J Solid State Electrochem 16, 3467–3472 (2012). https://doi.org/10.1007/s10008-012-1838-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1838-9

Keywords

Navigation