Skip to main content
Log in

Mass transport and kinetics of electrochemical oxygen reduction at nanostructured platinum electrode and solid polymer electrolyte membrane interface

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen reduction reaction (orr) at nanostructured Pt electrode in a flooded polymer electrolyte membrane fuel cell environment has been investigated using a nanoporous Pt–Nafion membrane composite microelectrode by means of steady-state voltammetry and chronoamperometry. The interfacial mass transport of dissolved oxygen is characterized by comparable diffusion coefficients and lower concentrations as compared with literature data obtained with a humidified membrane. The exchange current densities measured at the nanoporous Pt and membrane interface are higher than those reported for the orr in acidic solutions or at polycrystalline Pt and Nafion membrane interface, indicating the improvement of the orr kinetics. Increasing temperature substantially improves the orr kinetics and accelerates the diffusion of oxygen, as expected by their Arrhenius behavior. At the nanoporous Pt and membrane interface, the Tafel plot exhibits an unusual slope of around 240 mV dec−1 at high overpotentials. This Tafel slope doubling the value of 120 mV dec−1 normally reported for the orr in acidic media and at the polycrystalline Pt and membrane interface is a signature of non-uniform polarization of the nanoporous Pt electrode on the membrane which origins have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meza D, Morales U, Roquero P, Salgado L (2010) Inter J Hydrogen Energy 35:12111–12114

    Article  CAS  Google Scholar 

  2. Takahashi I, Kocha S (2010) J Power Sources 195:6312–6322

    Article  CAS  Google Scholar 

  3. Rao C, Viswanathan B (2010) J Phys Chem C 114:8661–8667

    Article  CAS  Google Scholar 

  4. Jiang J, Rajagopalan K (2011) Electrochim Acta 46:717–722

    Article  Google Scholar 

  5. Murthi V, Urian R, Mukerjee S (2004) J Phys Chem B 108:11011–11023

    Article  CAS  Google Scholar 

  6. Raghuveer V, Manthiram A, Bard A (2005) J Phys Chem B 109:22909–22912

    Article  CAS  Google Scholar 

  7. Toda T, Igarashi H, Uchida H, Watanabe M (1999) J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  8. Yano H, Jung M, Uchida H, Watanabe M (2008) J Phys Chem C 112:8372–8380

    Article  CAS  Google Scholar 

  9. Zhang J, Mo Y, Vukmirovic M, Klie R, Sasaki K, Adzic R (2004) J Phys Chem B 108:10955–10964

    Article  CAS  Google Scholar 

  10. Xu Y, Ruban A, Mavrikakis M (2004) J Am Chem Soc 126:4717–4725

    Article  CAS  Google Scholar 

  11. Wilson M, Goffesfeld S (1992) J Electrochem Soc 139:L28–L30

    Article  CAS  Google Scholar 

  12. Parthasarathy A, Srinivasan S, Appleby A, Martin C (1992) J Electroanal Chem 339:101–121

    Article  CAS  Google Scholar 

  13. Richards R, Bönnemann H (2001) Fuel Cells Bull 4:7–10

    Article  Google Scholar 

  14. Poirier J, Stoner G (1994) J Electrochem Soc 141:425–430

    Article  CAS  Google Scholar 

  15. Peuckert M, Yoneda T, Betta R, Boudart M (1986) J Electrochem Soc 113:944–947

    Article  Google Scholar 

  16. Paulus U, Schmit T, Gasteiger H, Behm R (2001) J Electroanal Chem 495:134–145

    Article  CAS  Google Scholar 

  17. Antoine O, Bultel Y, Durand R (2001) J Electroanal Chem 499:85–94

    Article  CAS  Google Scholar 

  18. Gottesfeld S, Raistrick I, Srinivasan S (1987) J Electrochem Soc 134:1455–1462

    Article  CAS  Google Scholar 

  19. Floriano J, Ticianelli E, Gonzalez E (1994) J Electroanal Chem 367:157–164

    Article  CAS  Google Scholar 

  20. Parthasarathy A, Davé B, Srinivasan S, Appleby A, Martin C (1992) J Electrochem Soc 139:1634–1641

    Article  CAS  Google Scholar 

  21. Parthasarathy A, Martin C, Srinivasan S (1991) J Electrochem Soc 138:916–921

    Article  CAS  Google Scholar 

  22. Jiang J, Wu B, Cha C (1996) J Electroanal Chem 417:89–93

    Article  CAS  Google Scholar 

  23. Basura V, Beattie P, Holdcroft S (1998) J Electroanal Chem 458:1–5

    Article  CAS  Google Scholar 

  24. Beattie P, Basura V, Holdcroft S (1999) J Electroanal Chem 468:180–192

    Article  CAS  Google Scholar 

  25. Jiang J, Wu B, Cha C (1998) J Electroanal Chem 446:159–163

    Article  CAS  Google Scholar 

  26. Jiang J, Wu B, Cha C, Zhai R (1998) Electroanalysis 10:343–346

    Article  CAS  Google Scholar 

  27. Jiang J, Kucernak A (2004) J Electroanal Chem 567:123–137

    Article  CAS  Google Scholar 

  28. Jiang J, Kucernak A (2002) J Electroanal Chem 533:153–165

    Article  CAS  Google Scholar 

  29. Jiang J, Kucernak A (2002) J Electroanal Chem 520:64–70

    Article  CAS  Google Scholar 

  30. Evans S, Elliott J, Andrews L, Bartlett P, Doyle P, Denuault G (2002) Anal Chem 74:1322–1326

    Article  CAS  Google Scholar 

  31. Nelson P, Owen J (2003) J Electrochem Soc 150:A1313–A1317

    Article  CAS  Google Scholar 

  32. Koryta J, Dvořák J, Kavan L (1993) Principles of electrochemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  33. Denuault G, Mirkin M, Bard A (1991) J Electroanal Chem 308:27–38

    Article  CAS  Google Scholar 

  34. Stutts K, Wightman R, Mark R (1983) Anal Chem 55:1576–1579

    Article  CAS  Google Scholar 

  35. Verbrugge M (1989) J Electrochem Soc 136:417–423

    Article  CAS  Google Scholar 

  36. Cha C, Li C, Yang H, Liu P (1994) J Electroanal Chem 368:47–54

    Article  CAS  Google Scholar 

  37. Ogumi Z, Kuroe T, Takehara Z (1985) J Electrochem Soc 132:2601–2605

    Article  CAS  Google Scholar 

  38. Ogumi Z, Takehara Z, Yoshizawa S (1984) J Electrochem Soc 131:769–773

    Article  CAS  Google Scholar 

  39. Parthasarathy A, Srinivasan S, Appleby A, Martin C (1992) J Electrochem Soc 139:2530–2537

    Article  CAS  Google Scholar 

  40. Lide D (1995) CRC handbook of chemistry and physics, 76th edn. CRC Press, London

    Google Scholar 

  41. Bockris J, Conway B, Yeager E (1981) Comprehensive treaties of electrochemistry, vol 3. Plenum, London

    Book  Google Scholar 

  42. Tu W, Liu W, Cha C, Wu B (1998) Electrochim Acta 43:3731–3739

    Article  CAS  Google Scholar 

  43. McBreen J (1985) J Electrochem Soc 132:1112–1116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Kucernak, A. Mass transport and kinetics of electrochemical oxygen reduction at nanostructured platinum electrode and solid polymer electrolyte membrane interface. J Solid State Electrochem 16, 2571–2579 (2012). https://doi.org/10.1007/s10008-012-1676-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1676-9

Keywords

Navigation