Skip to main content
Log in

Li-cycling properties of nano-crystalline (Ni1 − x Zn x )Fe2O4 (0 ≤ x ≤ 1)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Sol–gel auto-combustion method is adopted to prepare solid solutions of nano-crystalline spinel oxides, (Ni1 − x Zn x )Fe2O4 (0 ≤ x ≤ 1).The phases are characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy, selected area electron diffraction, and Brunauer–Emmett–Teller surface area. The cubic lattice parameters, calculated by Rietveld refinement of XRD data by taking in to account the cationic distribution and affinity of Zn ions to tetrahedral sites, show almost Vegard’s law behavior. Galvanostatic cycling of the heat-treated electrodes of various compositions are carried in the voltage range 0.005–3 V vs. Li at 50 mAg−1 up to 50 cycles. Phases with high Zn content x ≥ 0.6 showed initial two-phase Li-intercalation in to the structure. Second-cycle discharge capacities above 1,000 mAh g−1 are observed for all x. However, drastic capacity fading occurs in all cases up to 10–15 cycles. The capacity fading between 10 and 50 cycles is found to be greater than 52% for x ≤ 0.4 and for x = 0.8. For x = 0.6 and x = 1, the respective values are 40% and 18% and a capacity of 570 and 835 mAh g−1 is retained after 50 cycles. Cyclic voltammetry and ex situ transmission electron microscopy data elucidate the Li-cycling mechanism involving conversion reaction and Li–Zn alloying–dealloying reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoshio M, Brodd RJ, Kozawa A (eds) (2009) Lithium-ion batteries: science and technologies. Springer, New York

  2. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Adv Mater 22(35):E170–E192

    Article  CAS  Google Scholar 

  3. Taberna L, Mitra S, Poizot P, Simon P, Tarascon JM (2006) Nat Mater 5(7):567–573

    Article  CAS  Google Scholar 

  4. Guo X, Lu X, Fang X, Mao Y, Wang Z, Chen L, Xu X, Yang H, Liu Y (2010) Electrochem Commun 12(6):847–850

    Article  CAS  Google Scholar 

  5. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2008) Electrochim Acta 53(5):2380–2385

    Article  CAS  Google Scholar 

  6. Lavela P, Tirado JL (2007) J Power Sources 172(1):379–387

    Article  CAS  Google Scholar 

  7. Kalai Selvan R, Kalaiselvi N, Augustin CO, Doh CH, Sanjeeviraja C (2006) J Power Sources 157(1):522–527

    Article  CAS  Google Scholar 

  8. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2009) Bull Mater Sci 32(3):295–304

    Article  CAS  Google Scholar 

  9. Ariyoshi K, Makimura Y, Ohzuku T (2009) In: Ozawa K (ed) Lithium ion rechargeable batteries, vol 2. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  10. Chen CJ, Greenblatt M, Waszczak JV (1986) Solid State Ionics 18 & 19:838–846

    Article  Google Scholar 

  11. Vidal-Abarca C, Lavela P, Tirado JL (2010) J Phys Chem C 114(29):12828–12832

    Article  CAS  Google Scholar 

  12. Alcantara R, Jaraba M, Lavela P, Tirado JL, Jumas JC, Olivier-Fourcade J (2003) Electrochem Commun 5:16–21

    Article  CAS  Google Scholar 

  13. Lavela P, Kyeremateng NA, Tirado JL (2010) Mater Chem Phys 124(1):102–108

    Article  CAS  Google Scholar 

  14. Zhao H, Zheng Z, Wong KW, Wang S, Huang B, Li D (2007) Electrochem Commun 9(10):2606–2610

    Article  CAS  Google Scholar 

  15. Zhao Y, Li J, Ding Y, Guan L (2011) J Mater Chem 21:19101–19105

    Article  CAS  Google Scholar 

  16. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Adv Funct Mater 17(15):2855–2861

    Article  CAS  Google Scholar 

  17. Yang Y, Zhao Y, Xiao L, Zhang L (2008) Electrochem Commun 10(8):1117–1120

    Article  CAS  Google Scholar 

  18. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2001) J Power Sources 97–98:235–239

    Article  Google Scholar 

  19. Hankare PP, Sankpal UB, Patil RP, Mulla IS, Sasikala R, Tripathi AK, Garadkar KM (2010) J Alloys Compd 496(1–2):256–260

    Article  CAS  Google Scholar 

  20. Cherian CT, Reddy MV, Magdaleno T, Sow C-H, Ramanujachary KV, Subba Rao GV, Chowdari BVR (2012) CrystEngComm 14:978–986

    Article  CAS  Google Scholar 

  21. Shannon RD (1976) Acta Crystallogr Sect A: Found Crystallogr 32(5):751–767

    Article  Google Scholar 

  22. Ding Y, Yang Y, Shao H (2011) Electrochim Acta 56(25):9433–9438

    Article  CAS  Google Scholar 

  23. Wang J, King P, Huggins RA (1986) Solid State Ionics 20(3):185–189

    Article  CAS  Google Scholar 

  24. Wang H, Pan Q, Cheng Y, Zhao J, Yin G (2009) Electrochim Acta 54(10):2851–2855

    Article  CAS  Google Scholar 

  25. Deng Y, Zhang Q, Tang S, Zhang L, Deng S, Shi Z, Chen G (2011) Chem Commun 47(24):6828–6830

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. R. Chowdari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherian, C.T., Reddy, M.V., Rao, G.V.S. et al. Li-cycling properties of nano-crystalline (Ni1 − x Zn x )Fe2O4 (0 ≤ x ≤ 1). J Solid State Electrochem 16, 1823–1832 (2012). https://doi.org/10.1007/s10008-012-1662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1662-2

Keywords

Navigation