Skip to main content

Advertisement

Log in

Comparison of carbon aerogel and carbide-derived carbon as electrode materials for non-aqueous supercapacitors with high performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Two porous carbon materials, one synthesised by pyrolysis of an organic aerogel prepared using sol–gel method and the other synthesised from molybdenum carbide by high temperature chlorination method, were tested as supercapacitor electrode materials in a non-aqueous tetraalkylammonium salt-based electrolyte. The gravimetric capacitance values calculated for the carbon aerogel (CAG)-based system were almost two times smaller (~55 F g−1) compared to carbide-derived carbon (C(Mo2C))-based system (~125 F g−1). However, due to the very wide region of ideal polarizability, 3.6 V for C(Mo2C) and 3.8 V for CAG-based test cells, very high energy densities up to 63 Wh kg−1 (34 Wh dm−3) and power densities up to 757 kW kg−1 (314 kW dm−3) were estimated for these systems, respectively. CAG-based system shows very short characteristic charge/discharge time constant values (0.05 s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Lin R, Taberna PL, Chmiola J, Guay D, Gogotsi Y, Simon P (2009) J Electrochem Soc 156:A7–A12

    Article  CAS  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic, New York

    Google Scholar 

  4. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  5. Lust E, Jänes A, Arulepp M (2004) J Solid State Electrochem 8:488–496

    Article  CAS  Google Scholar 

  6. Eikerling M, Kornyshev A, Lust E (2005) J Electrochem Soc 152:E24–E33

    Article  CAS  Google Scholar 

  7. Frackowiak E, Béguin F (2001) Carbon 39:937–950

    Article  CAS  Google Scholar 

  8. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  9. Singhal S, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, Oxford

    Google Scholar 

  10. Peled E (1983) Ambient temperature lithium batteries. In: Gabano JP (ed) Lithium batteries. Oxford University Press, London

    Google Scholar 

  11. Mayer ST, Pekala RW, Kaschmitter JL (1993) J Electrochem Soc 140:446–451

    Article  CAS  Google Scholar 

  12. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) J Non-Cryst Solids 225:74–80

    Article  CAS  Google Scholar 

  13. Liu X, Juan L, Zhan L, Tang L, Wang Y, Qiao W, Liang X, Ling L (2010) J Electroanal Chem 642:75–81

    Article  CAS  Google Scholar 

  14. Lust E, Jänes A, Arulepp M (2004) J Electroanal Chem 562:33–42

    Article  CAS  Google Scholar 

  15. Chmiola J, Dash R, Yushin G, Gogotsi Y (2006) J Power Sources 158:765–772

    Article  CAS  Google Scholar 

  16. Pérez-Caballero F, Peikolainen A-L, Koel M, Herbert M, Galindo A, Montilla F (2008) Open Pet Eng J 1:42–46

    Article  Google Scholar 

  17. Jänes A, Thomberg T, Kurig H, Lust E (2009) Carbon 47:23–29

    Article  Google Scholar 

  18. Gregg SJ, Sing KSW (1982) Adsorption. Surface area and porosity. Academic, London

    Google Scholar 

  19. ISO-15901-3:2007. Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption—part 3: analysis of micropores by gas adsorption

  20. Li J, Wang X, Huang Q, Gamboa S, Sebastian PJ (2006) J Power Sources 158:784–788

    Article  CAS  Google Scholar 

  21. Wu D, Fu R, Yu Z (2005) J Appl Polym Sci 96:1429–1435

    Article  CAS  Google Scholar 

  22. Lust E, Nurk G, Jänes A, Arulepp M, Permann L, Nigu P, Möller P (2002) Condens Matter Phys 5:307–328

    Google Scholar 

  23. Thomberg T, Jänes A, Lust E (2009) J Electroanal Chem 630:55–62

    Article  CAS  Google Scholar 

  24. Tõnurist K, Jänes A, Thomberg T, Kurig H, Lust E (2009) J Electrochem Soc 156:A334–A342

    Article  Google Scholar 

  25. Taberna PL, Simon P, Fauvarque JF (2003) J Electrochem Soc 150:A292–A300

    Article  CAS  Google Scholar 

  26. Burke AF (2000) J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  27. Arulepp M, Leis J, Lätt M, Miller F, Rumma K, Lust E, Burke AF (2006) J Power Sources 162:1460–1466

    Article  CAS  Google Scholar 

  28. Arulepp M, Permann L, Leis J, Perkson A, Rumma K, Jänes A, Lust E (2004) J Power Sources 133:320–328

    Article  CAS  Google Scholar 

  29. Zhao S, Wu F, Yang L, Gao L, Burke AF (2010) Electrochem Commun 12:242–245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Estonian Science Foundation Grant No. 8172, Estonian Ministry of Education and Research (project SF0180002s08) and by graduate school ‘Functional materials and processes’ receiving funding from the European Social Fund under project 1.2.0401.09-0079 in Estonia. Prof. Kalle Kirsimäe and Mr. Jaan Aruväli from the Institute of Ecology and Geography and Mrs. Heisi Kurig from the Institute of Chemistry at the University of Tartu are thanked for the help with XRD and adsorption studies of carbon samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enn Lust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laheäär, A., Peikolainen, AL., Koel, M. et al. Comparison of carbon aerogel and carbide-derived carbon as electrode materials for non-aqueous supercapacitors with high performance. J Solid State Electrochem 16, 2717–2722 (2012). https://doi.org/10.1007/s10008-012-1660-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1660-4

Keywords

Navigation