Skip to main content
Log in

Glycine-assisted hydrothermal synthesis of nanostructured Co x Ni1−x –Al layered triple hydroxides as electrode materials for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured Co x Ni1−x –Al layered triple hydroxides (Co x Ni1−x –Al LTHs) have been successfully synthesized by a facile hydrothermal method using glycine as chelating agent. The samples were characterized by X-ray diffraction, thermogravimetry, Fourier transform infrared spectroscopy and scanning electron microscopy. The morphologies of Co x Ni1−x –Al LTHs varied with the Co content and its effect on the electrochemical behavior was studied by cyclic voltammetry and galvanostatic charge–discharge techniques. Electrochemical data demonstrated that the Co x Ni1−x –Al LTHs with Co/Ni molar ratio of 3:2 owned the best performance and delivered a maximum specific capacitance of 1,375 F g−1 at a current density of 0.5 A g−1 and a good high-rate capability. The capacitance retained 93.3% of the initial value after 1,000 continuous charge–discharge cycles at a current density of 2 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic, New York

    Google Scholar 

  2. Bohlen O, Kowal J, Sauer DU (2007) J Power Sources 172:468–475

    Article  CAS  Google Scholar 

  3. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS (2009) Int J Hydrogen Energy 34:4889–4899

    Article  CAS  Google Scholar 

  4. Conway BE (1991) J Electrochem Soc 138:1539–1548

    Article  CAS  Google Scholar 

  5. Jang JH, Machida K, Kim Y, Naoi K (2006) Electrochim Acta 52:1733–1741

    Article  CAS  Google Scholar 

  6. Sels B, Vos DD, Buntinx M, Pierard F, Kirsch-De Mesmaeker A, Jacobs P (1999) Nature 400:855–857

    Article  CAS  Google Scholar 

  7. Liu ZP, Ma RZ, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) J Am Chem Soc 128:4872–4880

    Article  CAS  Google Scholar 

  8. Darder M, López-Blanco M, Aranda P, Leroux F, Ruiz-Hitzky E (2005) Chem Mater 17:1969–1977

    Article  CAS  Google Scholar 

  9. Leroux F, Gachon J, Besse J-P (2004) J Solid State Chem 177:245–250

    Article  CAS  Google Scholar 

  10. Forano C, Vial S, Mousty C (2006) Curr Nanosci 2:283–294

    CAS  Google Scholar 

  11. Chen CP, Gunawan P, Xu R (2011) J Mater Chem 21:1218

    Article  CAS  Google Scholar 

  12. Wang J, Song YC, Li ZS, Liu Q, Zhou JD, Jing XY, Zhang ML, Jiang ZH (2010) Energy Fuel 24:6463–6467

    Article  CAS  Google Scholar 

  13. Malak-Polaczyk A, Vix-Guterl C, Frackowiak E (2010) Energy Fuel 24:3346–3351

    Article  CAS  Google Scholar 

  14. Wang Y, Yang WS, Zhang SC, Evans DG, Duan X (2005) J Electrochem Soc 152:A2130

    Article  Google Scholar 

  15. Su LH, Zhang XG, Mi CH, Liu Y (2008) J Power Sources 179:388–394

    Article  CAS  Google Scholar 

  16. Wang Y, Yang WS, Chen C, Evans DG (2008) J Power Sources 184:682–690

    Article  CAS  Google Scholar 

  17. Scavetta E, Ballarin B, Gazzano M, Tonelli D (2009) Electrochim Acta 54:1027–1033

    Article  CAS  Google Scholar 

  18. Liu XM, Zhang YH, Zhang XG, Fu SY (2004) Electrochim Acta 49:3137–3141

    Article  CAS  Google Scholar 

  19. Chen H, Wang JM, Pan T, Zhao YL, Zhang JQ, Cao CN (2003) J Electrochem Soc 150:A1399–A1404

    Article  CAS  Google Scholar 

  20. Gupta V, Gupta S, Miura N (2009) J Power Sources 189:1292–1295

    Article  CAS  Google Scholar 

  21. Prevot V, Caperaa N, Taviot-Gueho C, Forano C (2009) Cryst Growth Des 9:3646–3654

    Article  CAS  Google Scholar 

  22. Arai Y, Ogawa M (2009) Applied Clay Science 42:601–604

    Article  CAS  Google Scholar 

  23. Liang JB, Ma RZ, Iyi N, Ebina Y, Takada K, Sasaki T (2009) Chem Mater 22:371–378

    Article  Google Scholar 

  24. Shannon RD, Prewitt CT (1969) Acta Crystallogr Sect B 25:925–946

    Article  CAS  Google Scholar 

  25. Zhao Y, Li F, Zhang R, Evans DG, Duan X (2002) Chem Mater 14:4286–4291

    Article  CAS  Google Scholar 

  26. Gerardin C, Kostadinova D, Sanson N, Coq B, Tichit D (2005) Chem Mater 17:6473–6478

    Article  CAS  Google Scholar 

  27. Wang H, Fan GL, Zheng C, Xiang X, Li F (2010) Ind Eng Chem Res 49:2759–2767

    Article  CAS  Google Scholar 

  28. Villegas JC, Giraldo OH, Laubernds K, Suib SL (2003) Inorg Chem 42:5621–5631

    Article  CAS  Google Scholar 

  29. Hu ZA, Xie YL, Wang YX, Xie LJ, Fu GR, Jin XQ, Zhang ZY, Yang YY, Wu HY (2009) J Phys Chem C 113:12502–12508

    Article  CAS  Google Scholar 

  30. Perez-Ramrez J, Mul G, Kapteijn F, Moulijn JA (2001) J Mater Chem 11:821–830

    Article  Google Scholar 

  31. Kiss T, Sovago I, Gergely A (1991) Pure Appl Chem 63:597–638

    Article  Google Scholar 

  32. Casale A, De Robertis A, De Stefano C, Gianguzza A, Patane G, Rigano C, Sammartano S (1995) Thermochim Acta 255:109–141

    Article  CAS  Google Scholar 

  33. Xiao T, Tang YW, Jia ZY, Li DW, Hu XY, Li BH, Luo LJ (2009) Nanotechnology 20:475603–475609

    Article  Google Scholar 

  34. Zhang DF, Sun LD, Yin JL, Yan CH (2003) Adv Mater 15:1022–1025

    Article  CAS  Google Scholar 

  35. Chen HM, Zhao YQ, Yang MQ, He JH, Chu PK, Zhang J, Wu SH (2010) Anal Chim Acta 659:266–273

    Article  CAS  Google Scholar 

  36. Wang Y, Zhu QS, Zhang HG (2005) Chem Commun :5231–5233

  37. Gupta V, Gupta S, Miura N (2008) J Power Sources 175:680–685

    Article  CAS  Google Scholar 

  38. Meher SK, Justin P, Rao GR (2010) Electrochim Acta 55:8388–8396

    Article  CAS  Google Scholar 

  39. Zhao DD, Bao SJ, Zhou WJ, Li HL (2007) Electrochem Commun 9:869–874

    Article  CAS  Google Scholar 

  40. Fan Z, Chen JH, Cui KZ, Sun F, Xu Y, Kuang YF (2007) Electrochim Acta 52:2959–2965

    Article  CAS  Google Scholar 

  41. Park JH, Kim S, Park OO, Ko JM (2006) Appl Phys A 82:593–597

    Article  CAS  Google Scholar 

  42. Zheng Z, Huang L, Zhou Y, Hu XW, Ni XM (2009) Solid State Sci 11:1439–1443

    Article  CAS  Google Scholar 

  43. Armstrong RD, Briggs GWD, Charles EA (1988) J Appl Electrochem 18:215–219

    Article  CAS  Google Scholar 

  44. Armstrong RD, Charles EA (1989) J Power Sources 25:89–97

    Article  CAS  Google Scholar 

  45. Chen J, Bradhurst DH, Dou SX, Liu HK (1999) J Electrochem Soc 146:3606–3612

    Article  CAS  Google Scholar 

  46. Hu CC, Cheng CY (2002) Electrochem Solid-State Lett 5:A43–A46

    Article  CAS  Google Scholar 

  47. Zhao YL, Wang JM, Chen H, Pan T, Zhang JQ, Cao CN (2004) Electrochim Acta 50:91–98

    Article  Google Scholar 

  48. Yuan CZ, Su LH, Gao B, Zhang XG (2008) Electrochim Acta 53:7039–7047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by National Natural Science Foundation of China (no. 20873064)and Natural Science Foundation of Jiangsu Province (No.BK2011030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Jiang, J., Yuan, C. et al. Glycine-assisted hydrothermal synthesis of nanostructured Co x Ni1−x –Al layered triple hydroxides as electrode materials for high-performance supercapacitors. J Solid State Electrochem 16, 1933–1940 (2012). https://doi.org/10.1007/s10008-011-1596-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1596-0

Keywords

Navigation