Skip to main content
Log in

Monitoring of the electrochemical degradation of PEDOT films on gold using the bending beam method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical and mechanical properties of thin poly(3,4-ethylenedioxythiophene) films deposited on gold have been investigated in aqueous sulfuric acid and sodium-sulfate solutions. It has been shown that at sufficiently positive electrode potentials, overoxidation of the polymer takes place. In some cases, only small changes could be observed in the shape of cyclic voltammograms taken in the “stability region” before and after overoxidation. In contrast to this, the impedance spectra recorded after overoxidation differed considerably from the impedance spectra of a freshly made electrode. Morphological changes of the polymer caused by overoxidation (degradation) could be detected by using the bending beam method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lang U, Naujoks N, Dual J (2009) Synthetic Met 159:473–479

    Article  CAS  Google Scholar 

  2. Wang GF, Tao XM, Wang RX (2008) Nanotechnology 19:145201

    Article  Google Scholar 

  3. Lilliedala MR, Medforda AJ, Madsena MV, Norrmana K, Krebs FC (2010) Sol Energ Mat Sol C 94:2018–2031

    Article  Google Scholar 

  4. Nasybulin E, Wei S, Cox M, Kymissis I, Levon K (2011) J Phys Chem C 115:4307–4314

    Article  CAS  Google Scholar 

  5. Scott JC (2004) Science 304:62–63

    Article  CAS  Google Scholar 

  6. Möller S, Perlov C, Jackson W, Taussig C, Forrest SR (2003) Nature 426:166–169

    Article  Google Scholar 

  7. Cui X, Martin DC (2003) Sensor Actuat B-Chem 89:92–102

    Article  Google Scholar 

  8. Vázquez M, Danielsson P, Bobacka J, Lewenstam A, Ivaska A (2004) Sensor Actuat B-Chem 97:182–189

    Article  Google Scholar 

  9. Bobacka J (1999) Anal Chem 71:4932–4937

    Article  CAS  Google Scholar 

  10. Drillet JF, Dittmeyer R, Jüttner K, Li L, Mangold KM (2006) Fuel Cells 6:432–438

    Article  CAS  Google Scholar 

  11. Drillet JF, Dittmeyer R, Jüttner K (2007) J Appl Electrochem 37:1219–1226

    Article  CAS  Google Scholar 

  12. Bobacka J, Lewenstam A, Ivaska A (2000) J Electroanal Chem 489:17–27

    Article  CAS  Google Scholar 

  13. Yamato H, Ohwa M, Wernet W (1995) J Electroanal Chem 397:163–170

    Article  Google Scholar 

  14. Sakmeche N, Aeiyach S, Aaron JJ, Jouini M, Lacroix JC, Lacaze PC (1999) Langmuir 15:2566–2574

    Article  CAS  Google Scholar 

  15. Zykwinska A, Domagala W, Pilawa B, Lapkowski M (2005) Electrochim Acta 50:1625–1633

    Article  CAS  Google Scholar 

  16. Du X, Wang Z (2003) Electrochim Acta 48:1713–1717

    Article  CAS  Google Scholar 

  17. Pigani L, Heras A, Colina A, Seeber R, Lopez-Palacios J (2004) Electrochem Comm 6:1192–1198

    Article  CAS  Google Scholar 

  18. Pei Q, Inganaes O (1992) J Phys Chem 96:10507–10514

    Article  CAS  Google Scholar 

  19. Pei Q, Inganaes O (1993) J Phys Chem 97:6034–6041

    Article  CAS  Google Scholar 

  20. Tabard-Cossa V, Godin M, Grütter P, Burgess I, Lennox RB (2005) J Phys Chem B 109:17531–17537

    Article  CAS  Google Scholar 

  21. Láng GG (2008) In: Bard AJ, Inzelt Gy, Scholz F (eds) Electrochemical Dictionary. Springer, Berlin, pp 43–44

    Google Scholar 

  22. Láng GG, Sas NS, Vesztergom S (2009) Chem Biochem Eng Q 23:1–9

    Google Scholar 

  23. Ueno K, Seo M (1999) J Electrochem Soc 146:1496–1499

    Article  CAS  Google Scholar 

  24. Sahu SN, Scarminio J, Decker F (1990) J Electrochem Soc 137:1150–1154

    Article  CAS  Google Scholar 

  25. Cattarin S, Pantano E, Decker F (1999) Electrochem Commun 1:483–487

    Article  CAS  Google Scholar 

  26. Cattarin S, Decker F, Dini D, Margesin B (1999) J Electroanal Chem 474:182–187

    Article  CAS  Google Scholar 

  27. Raiteri R, Butt H-J Grattarola M (1998) Scanning Microscopy 12:243–254

    Google Scholar 

  28. Kongstein OE, Bertocci U, Stafford GR (2005) J Electrochem Soc 152:C116–C123

    Article  CAS  Google Scholar 

  29. Stafford GR, Bertocci U (2006) J Phys Chem B 110:15493–15498

    Article  CAS  Google Scholar 

  30. Godin M, Tabard-Cossa V, Miyahara Y, Monga T, Williams PJ, Beaulieu LY, Lennox B, Bruce R, Grütter P (2010) Nanotech 21:075501

    Article  Google Scholar 

  31. Stoney GG (1909) Proc Roy Soc London A32:172–175

    Google Scholar 

  32. Láng GG, Ueno K, Ujvári M, Seo M (2000) J Phys Chem B 104:2785–2789

    Article  Google Scholar 

  33. Láng GG, Seo M (2000) J Electroanal Chem 490:98–101

    Article  Google Scholar 

  34. Láng GG (2010) J Appl Phys 107:116104

    Article  Google Scholar 

  35. Stoyanova A, Tsakova V (2010) J Solid State Electrochem 14:1947–1955

    Article  CAS  Google Scholar 

  36. Poppendieck W, Hoffmann KP (2009) In: Vander Sloten J, Verdonck P, Nyssen M, Haueisen J (eds) ECIFMBE 2008, IFCMBE Proceedings 22, Springer, Heidelberg, pp 2409–2412

  37. Láng GG, Ujvári M, Rokob TA, Inzelt G (2006) Electrochim Acta 51:1680–1694

    Article  Google Scholar 

  38. Láng G, Ujvári M, Inzelt G (2001) Electrochim Acta 46:4159–4175

    Article  Google Scholar 

  39. Kazarinov VE, Levi MD, Skundin AM, Vorotyntsev MA (1989) J Electroanal Chem 271:193–211

    Article  CAS  Google Scholar 

  40. Vorotyntsev MA, Graczyk M, Lisowska-Oleksiak A, Goux J, Moise C (2004) J Solid State Electrochem 8:818–827

    Article  CAS  Google Scholar 

  41. Inzelt G, Láng GG (2010) In: Cosnier S, Karyakin A (eds) Electropolymerization. Wiley, Weinheim, pp 51–76

    Chapter  Google Scholar 

  42. Mirabella FM Jr (ed) (1993) Internal reflection spectroscopy, Practical spectroscopy series vol. 15. Marcel Dekker, New York, p 33

    Google Scholar 

  43. Kvarnström C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) Electrochim Acta 44:2739–2750

    Article  Google Scholar 

  44. Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S (1999) Macromolecules 32:6807–6812

    Article  CAS  Google Scholar 

  45. Kvarnström C, Neugebauer H, Ivaska A, Sariciftci NS (2000) J Mol Struct 521:271–277

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Hungarian Scientific Research Fund (grants OTKA-67994/OMFB-01078/2007, OTKA-PD75445) are gratefully acknowledged. The authors thank National Instruments Europe Ltd. for the donation of data acquisition cards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Győző G. Láng.

Additional information

Dedicated to Professor György Inzelt on occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ujvári, M., Takács, M., Vesztergom, S. et al. Monitoring of the electrochemical degradation of PEDOT films on gold using the bending beam method. J Solid State Electrochem 15, 2341–2349 (2011). https://doi.org/10.1007/s10008-011-1472-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1472-y

Keywords

Navigation