Skip to main content
Log in

Impact of glucose on the electrochemical performance of nano-LiCoPO4 cathode for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiCoPO4 nanoparticles were synthesized by standard and glucose-assisted sol–gel methods for use as cathodes in lithium-ion batteries. The effect of glucose on the characteristics of the formed LiCoPO4 nanoparticles was investigated by TGA, XRD, and FESEM. The TGA results indicated gradual decomposition of glucose in the temperature range 400–700 °C. The XRD results showed olivine phases in addition to small traces of Co3O4 for samples calcined at 400 °C while pure olivine phases were confirmed for the 700 °C calcined samples. The addition of glucose strongly suggests promotion of LiCoPO4 crystallization, as revealed by FESEM studies. The electrochemical measurements pertaining to LiCoPO4 samples calcined at 400 °C suggested an enhancement of initial discharge capacity from 103.3 to 144.6 mAh/g for the standard and glucose-based electrodes, respectively. Further, the effects of conductive additive and excess lithium on the electrochemical performance of LiCoPO4 have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) J Solid State Electrochem 8:558–564

    Article  CAS  Google Scholar 

  2. Wolfenstine J, Read J, Allen JL (2007) J Power Sources 163:1070–1073

    Article  CAS  Google Scholar 

  3. Lloris JM, Pérez VC, Tirado JL (2002) Electrochem Solid-State Lett 5:A234–A237

    Article  CAS  Google Scholar 

  4. Morgan D, Van der VA, Ceder G (2004) Electrochem Solid-State Lett 7:A30–A32

    Article  CAS  Google Scholar 

  5. Zaghib K, Mauger A, Goodenough JB (2007) Chem Mater 19:3740–3747

    Article  CAS  Google Scholar 

  6. Amine K, Yasuda H, Yamachib M (2000) Electrochem Solid-State Lett 3:178–179

    Article  CAS  Google Scholar 

  7. Kim DH, Im JS, Kang JW, Kim EJ, Ahn HY, Kim J (2007) J Nanosci Nanotechnol 7:3949–3953

    Article  CAS  Google Scholar 

  8. Kim TR, Kim DH, Ryu HW, Kim J (2007) J Phys Chem Solids 68:1203–1206

    Article  CAS  Google Scholar 

  9. Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) J Power Sources 119–121:232–238

    Article  Google Scholar 

  10. Yang S, Zavalij PY, Whittingham MS (2001) Electrochem Commun 3:505–508

    Article  CAS  Google Scholar 

  11. Prosini PP, Zanc D, Pasquali M (2001) Electrochim Acta 46:3517–3523

    Article  CAS  Google Scholar 

  12. Chen Z, Dahn JR (2002) J Electrochem Soc 149:A1184–A1189

    Article  CAS  Google Scholar 

  13. Jin B, Gu HB, Kim KW (2008) J Solid State Electrochem 12:105–111

    Article  CAS  Google Scholar 

  14. Liu H, Li C, Cao Q, Wu YP, Holze R (2008) J Solid State Electrochem 12:1017–1020

    Article  CAS  Google Scholar 

  15. Sheng YC, Bo G, Ling HS, Chang HM, Xiao GZ (2009) J Solid State Electrochem 13:1361–1366

    Article  Google Scholar 

  16. Fey GTK, Lu TL (2008) J Power Sources 178:807–814

    Article  CAS  Google Scholar 

  17. Guoxiu W, Hao L, Jian L, Shizhang Q, Gaoqing ML, Paul M, Hyojun A (2010) Adv Mater 22:4944–4948

    Article  Google Scholar 

  18. Idalia B, Andreas H, Igor D, Petr N, Markus N (2009) J Mater Chem 19:5125–5128

    Article  Google Scholar 

  19. Jin B, Jin EM, Park KH, Gu HB (2008) Electrochem Commun 10:1537–1540

    Article  CAS  Google Scholar 

  20. Murugan AV, Muraliganth T, Manthiram A (2008) J Phys Chem C 112:14665–14671

    Article  CAS  Google Scholar 

  21. Lai CY, Xu QJ, Ge HH, Zhou GD, Xie JY (2008) Solid State Ionics 179:1736–1739

    Article  CAS  Google Scholar 

  22. Murugan AV, Muraliganth T, Ferreira PJ, Manthiram A (2009) Inorg Chem 48:946–952

    Article  CAS  Google Scholar 

  23. Han DW, Kang YM, Yin RZ, Song MS, Kwon HS (2009) Electrochem Commun 11:137–140

    Article  CAS  Google Scholar 

  24. Gwon H, Seo DH, Kim SW, Kim J, Kang K (2009) Adv Funct Mater 19:3285–3292

    Article  CAS  Google Scholar 

  25. Drezen T, Kwon NH, Bowen P, Teerlinck I, Isono M, Exnar I (2007) J Power Sources 174:949–953

    Article  CAS  Google Scholar 

  26. Zhihua L, Duanming Z, Fengxia Y (2009) J Mater Sci 44:2435–2443

    Article  Google Scholar 

  27. Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) J Alloys Compd 497:321–324

    Article  CAS  Google Scholar 

  28. Wang F, Yang J, Li YN, Wang J (2010) J Power Sources 195:6884–6887

    Article  CAS  Google Scholar 

  29. Shui JL, Yan Y, Chen CH (2006) Electrochem Commun 8:1087–1091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD; KRF-2007-412-J02003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaekook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E.J., Xu, H.Y., Lim, J.S. et al. Impact of glucose on the electrochemical performance of nano-LiCoPO4 cathode for Li-ion batteries. J Solid State Electrochem 16, 149–155 (2012). https://doi.org/10.1007/s10008-011-1291-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1291-1

Keywords

Navigation