Skip to main content
Log in

Intermediate temperature ionic conductivity of Sm1.92Ca0.08Ti2O7–δ pyrochlore

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The results of concentration cell electromotive force methods (EMF) and electrochemical impedance spectroscopy measurements on the pyrochlore system Sm1.92Ca0.08Ti2O7–δ are presented. The data have been used to estimate total and partial conductivities and determine transport numbers for protons and oxide ions under various conditions. The EMF techniques employed include corrections for electrode polarisation resistance. The measurements were performed using wet and dry atmospheres in a wide \( {p_{{{{\rm{O}}_{{2}}}}}} \) range using mixtures of H2, N2, O2, and H2O in the temperature region where proton conductivity was expected (500–300 °C). The impedance measurements revealed the conductivity to be mainly ionic under all conditions, with the highest total conductivity measured being 0.045 S/m under wet oxygen at 500 °C. Both bulk and grain boundary conductivity was predominantly ionic, but electronic conductivity appeared to play a slightly larger part in the grain boundaries. EMF data confirmed the conductivity to be mainly ionic, with oxide ions being the major conducting species at 500 °C and protons becoming increasingly important below this temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iwahara H (1995) Solid State Ionics 77:289–298

    Article  CAS  Google Scholar 

  2. Scherban T, Nowick AS (1989) Solid State Ionics 35:189–194

    Article  Google Scholar 

  3. Bonanos N, Ellis B, Mahmood MN (1991) Solid State Ionics 44:305–311

    Article  CAS  Google Scholar 

  4. Ahmed I, Eriksson SG, Ahlberg E, Knee CS, Berastegui P, Johansson LG, Rundlöf H, Karlsson M, Matic A, Börjesson L, Engberg D (2006) Solid State Ionics 177:1395–1403

    Article  CAS  Google Scholar 

  5. Kreuer KD (2003) Annu Rev Mater Res 33:333–359

    Article  CAS  Google Scholar 

  6. Yamamura H, Nishino H, Kakinuma K, Nomura K (2003) J Ceram Soc Jan 111:902–906

    Article  CAS  Google Scholar 

  7. Kramer SA, Tuller HL (1995) Solid State Ionics 82:15–23

    Article  CAS  Google Scholar 

  8. Omata T, Okuda K, Tsugimoto S, Otsuka-Yao-Matsuo S (1997) Solid State Ionics 104:249–258

    Article  CAS  Google Scholar 

  9. Labrincha JA, Frade JR, Marques FMB (1997) Solid State Ionics 99:33–40

    Article  CAS  Google Scholar 

  10. Omata T, Otsuka-Yao-Matsuo S (2001) J Electrochem Soc 148:E252–E261

    Article  CAS  Google Scholar 

  11. Fjeld H, Haugsrud R, Gunnaes AE, Norby T (2008) Solid State Ionics 179:1849–1853

    Article  CAS  Google Scholar 

  12. Eurenius KEJ, Ahlberg E, Ahmed I, Eriksson SG, Knee CS (2010) Solid State Ionics 181:148–153

    Article  CAS  Google Scholar 

  13. Gorelov VP (1988) Elektrokhimiya 24:1380–1381

    CAS  Google Scholar 

  14. de Grotthuss CJT (1806) Ann Chim 58:54

    Google Scholar 

  15. Bentzer HK, Bonanos N, Phair JW (2010) Solid State Ionics 181:249–255

    Article  CAS  Google Scholar 

  16. Liu M, Hu H (1996) J Electrochem Soc 143:L109–L112

    Article  CAS  Google Scholar 

  17. Fleig J, Maier J (1998) J Electrochem Soc 145:2081–2089

    Article  CAS  Google Scholar 

  18. van Dijk T, Burggraaf AJ (1981) Phys Status Solidi A 63:229–240

    Article  Google Scholar 

  19. Verkerk MJ, Middelhuis BJ, Burggraaf AJ (1982) Solid State Ionics 6:159–170

    Article  CAS  Google Scholar 

  20. Eurenius KEJ, Ahlberg E, Knee CS (2010) Solid State Ionics 181:1577–1585

    Article  CAS  Google Scholar 

  21. Potter AR, Baker RT (2006) Solid State Ionics 177:1917–1924

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Swedish Research Council (Vetenskapsrådet) and by Risø-DTU as part of the project “Initiatives for Hydrogen Separation Membranes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Karnøe Bentzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eurenius, K.E.J., Bentzer, H.K., Bonanos, N. et al. Intermediate temperature ionic conductivity of Sm1.92Ca0.08Ti2O7–δ pyrochlore. J Solid State Electrochem 15, 2571–2579 (2011). https://doi.org/10.1007/s10008-010-1235-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1235-1

Keywords

Navigation