Skip to main content

Advertisement

Log in

Transport, thermomechanical, and electrode properties of perovskite-type \( {\left( {{\hbox{L}}{{\hbox{a}}_{0.{75} - x}}{\hbox{S}}{{\hbox{r}}_{0.{25} + x}}} \right)_{0.{95}}}{\hbox{M}}{{\hbox{n}}_{0.{5}}}{\hbox{C}}{{\hbox{r}}_{0.{5} - x}}{\hbox{T}}{{\hbox{i}}_x}{{\hbox{O}}_{{3} - }}_\delta \left( {x = 0 - 0.{5}} \right) \)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Increasing Sr2+ and Ti4+ concentrations in perovskite-type \( {\left( {{\hbox{L}}{{\hbox{a}}_{0.{75} - x}}{\hbox{S}}{{\hbox{r}}_{0.{25} + x}}} \right)_{0.{95}}}{\hbox{M}}{{\hbox{n}}_{0.{5}}}{\hbox{C}}{{\hbox{r}}_{0.{5} - x}}{\hbox{T}}{{\hbox{i}}_x}{{\hbox{O}}_{{3} - }}_\delta \left( {x = 0 - 0.{5}} \right) \) results in slightly higher thermal and chemical expansion, whereas the total conductivity activation energy tends to decrease. The average thermal expansion coefficients determined by controlled-atmosphere dilatometry vary in the range (10.8–14.5) × 10−6 K−1 at 373–1,373 K, being almost independent of the oxygen partial pressure. Variations of the conductivity and Seebeck coefficient, studied in the oxygen pressure range 10−18–0.5 atm, suggest that the electronic transport under oxidizing and moderately reducing conditions is dominated by p-type charge carriers and occurs via a small-polaron mechanism. Contrary to the hole concentration changes, the hole mobility decreases with increasing x. The oxygen permeation fluxes through dense ceramic membranes are quite similar for all compositions due to very low level of oxygen nonstoichiometry and are strongly affected by the grain-boundary diffusion and surface exchange kinetics. The porous electrodes applied onto lanthanum gallate-based solid electrolyte exhibit a considerably better electrochemical performance compared to the apatite-type La10Si5AlO26.5 electrolyte at atmospheric oxygen pressure, while Sr2+ and Ti4+ additions have no essential influence on the polarization resistance. In H2-containing gases where the electronic transport in \( {\left( {{\hbox{L}}{{\hbox{a}}_{0.{75} - x}}{\hbox{S}}{{\hbox{r}}_{0.{25} + x}}} \right)_{0.{95}}}{\hbox{M}}{{\hbox{n}}_{0.{5}}}{\hbox{C}}{{\hbox{r}}_{0.{5} - x}}{\hbox{T}}{{\hbox{i}}_x}{{\hbox{O}}_{{3} - }}_\delta \) perovskites becomes low, co-doping deteriorates the anode performance, which can be however improved by infiltrating Ni and \( {\hbox{Ce}}{{\hbox{O}}_{{\rm{2}} - }}_\delta \)v into the porous oxide electrode matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Fuel Cell Handbook (2004) EG&G technical services, 7th edn. Morgantown, West Virginia

    Google Scholar 

  2. Möbius H-H (1997) J Solid State Electrochem 1:2

    Article  Google Scholar 

  3. Tsipis EV, Kharton VV (2008) J Solid State Electrochem 12:1367

    Article  CAS  Google Scholar 

  4. Gorte RJ, Park S, Vohs JM, Wang C (2000) Adv Mater 12:1465

    Article  CAS  Google Scholar 

  5. Tsipis EV, Kharton VV, Frade JR (2005) J Eur Ceram Soc 25:2623

    Article  CAS  Google Scholar 

  6. Marina OA, Canfield NL, Stevenson JW (2002) Solid State Ionics 149:21

    Article  CAS  Google Scholar 

  7. Canales-Vásques J, Tao SW, Irvine JTS (2003) Solid State Ionics 159:159

    Article  Google Scholar 

  8. Primdahl S, Hansen JR, Grahl-Madsen L, Larsen PH (2001) J Electrochem Soc 148:A74

    Article  CAS  Google Scholar 

  9. Tao S, Irvine JTS (2004) J Electrochem Soc 151:A252

    Article  CAS  Google Scholar 

  10. Zha S, Tsang P, Cheng Z, Liu M (2005) J Solid State Chem 178:1844

    Article  CAS  Google Scholar 

  11. Ruiz-Moralez JC, Canales-Vazquez J, Peña-Martínez J, Marrero-López D, Núñez P (2006) Electrochim Acta 52:278

    Article  Google Scholar 

  12. Lu XC, Zhu JH (2007) Solid State Ionics 178:1467

    Article  CAS  Google Scholar 

  13. Chen XJ, Liu QL, Khor KA, Chan SH (2007) J Power Sources 165:34

    Article  CAS  Google Scholar 

  14. Wan J, Zhu JH, Goodenough JB (2006) Solid State Ionics 177:1211

    Article  CAS  Google Scholar 

  15. Kharton VV, Tsipis EV, Marozau IP, Viskup AP, Frade JR, Irvine JTS (2007) Solid State Ionics 178:101

    Article  CAS  Google Scholar 

  16. Jiang SP, Zhang L, Zhang Y (2007) J Mater Chem 17:2627

    Article  CAS  Google Scholar 

  17. Shaula AL, Kharton VV, Marques FMB (2005) J Solid State Chem 178:2050

    Article  CAS  Google Scholar 

  18. Kharton VV, Shaula AL, Vyshatko NP, Marques FMB (2003) Electrochim Acta 48:1817

    Article  CAS  Google Scholar 

  19. Tsipis EV, Kharton VV, Frade JR (2007) Electrochim Acta 52:4428

    Article  CAS  Google Scholar 

  20. Marozau IP, Kharton VV, Viskup AP, Frade JR, Samakhval VV (2006) J Eur Ceram Soc 26:1371

    Article  CAS  Google Scholar 

  21. Plint SM, Connor PA, Tao S, Irvine JTS (2006) Solid State Ionics 177:2005

    Article  CAS  Google Scholar 

  22. Oishi M, Yashiro K, Sato K, Mizusaki J, Kawada T (2008) J Solid State Chem 181:3177

    Article  CAS  Google Scholar 

  23. Tsipis EV, Kharton VV (2008) J Solid State Electrochem 12:1039

    Article  CAS  Google Scholar 

  24. Okamura T, Shimizu S, Nogi M, Tanimura M, Furuya K, Munakata F (2004) J Power Sources 130:38

    Article  CAS  Google Scholar 

  25. Mizusaki J (1992) Solid State Ionics 52:79

    Article  CAS  Google Scholar 

  26. Anderson HU, Kuo JH, Sparlin DM (1989) In: Singhal SC (ed) SOFC I. The Electrochemical Society, Pennington, p 111, PV89-11

    Google Scholar 

  27. Hahn WC Jr, Muan A (1960) Am J Sci 258:66

    Article  CAS  Google Scholar 

  28. Nakamura T, Petzow G, Gauckler LJ (1979) Mater Res Bull 14:649

    Article  CAS  Google Scholar 

  29. Yasuda I, Hishinuma M (1996) J Solid State Chem 123:382

    Article  CAS  Google Scholar 

  30. Kofstad P (1972) Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides. Wiley, New York

    Google Scholar 

  31. Raffaelle R, Anderson HU, Sparlin DM, Parris PE (1991) Phys Rev B 43:7991

    Article  CAS  Google Scholar 

  32. Kawada T, Horita T, Sakai N, Yokokawa H, Dokiya M (1995) Solid State Ionics 79:201

    Article  CAS  Google Scholar 

  33. Suzuki M, Sasaki H, Kajimura A (1997) Solid State Ionics 96:83

    Article  CAS  Google Scholar 

  34. Lee DK, Yoo HI (2000) J Electrochem Soc 147:2835

    Article  CAS  Google Scholar 

  35. Berenov AV, MacManus-Driscoll JL, Kilner JA (1999) Solid State Ionics 122:41

    Article  CAS  Google Scholar 

  36. Jiang SP (2002) Solid State Ionics 146:1

    Article  CAS  Google Scholar 

  37. Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) ci 134:2656

    CAS  Google Scholar 

  38. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford Univ Press, Oxford

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the FCT, Portugal (projects PTDC/CTM/64357/2006, SFRH/BD/45227/2008, SFRH/BPD/28629/2006, and SFRH/BPD/28913/2006), by the European Commission (project STRP 033410-MatSILC), and by the Ministry of Education and Science of the Russian Federation (state contract 02.740.11.5214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav V. Kharton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolotygin, V.A., Tsipis, E.V., Shaula, A.L. et al. Transport, thermomechanical, and electrode properties of perovskite-type \( {\left( {{\hbox{L}}{{\hbox{a}}_{0.{75} - x}}{\hbox{S}}{{\hbox{r}}_{0.{25} + x}}} \right)_{0.{95}}}{\hbox{M}}{{\hbox{n}}_{0.{5}}}{\hbox{C}}{{\hbox{r}}_{0.{5} - x}}{\hbox{T}}{{\hbox{i}}_x}{{\hbox{O}}_{{3} - }}_\delta \left( {x = 0 - 0.{5}} \right) \) . J Solid State Electrochem 15, 313–327 (2011). https://doi.org/10.1007/s10008-010-1203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1203-9

Keywords

Navigation