Skip to main content
Log in

Spontaneous Bi-modification of polycrystalline Pt electrode: fabrication, characterization, and performance in formic acid electrooxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Spontaneous modification of polycrystalline Pt by irreversibly adsorbed bismuth was performed in BiCl3 solution in concentrated hydrochloric acid under open-circuit conditions. After spontaneous modification, followed by extensive rinsing with water and drying, the surface was characterized using X-ray photoelectron spectroscopy and electrochemistry. Bi-oxy(chloride), oxide species, and metallic Bi were found at a submonolayer coverage on the Pt surface after spontaneous modification. The electrochemical response of Bi-modified polycrystalline Pt electrode in sulfuric acid solution exhibits a complex multi-peak feature, which is resulting in about constant redox charge (Bi species coverage) in the potential region from 0 to 0.9 V (vs. a standard hydrogen electrode). The spontaneously Bi-modified Pt catalyst in model studies exhibits a superior activity towards formic acid oxidation at fuel cell anode relevant potentials. The catalytic effect of bismuth oxy-species is explained in terms of both inhibition of COad formation and oxidation of COad in reaction with Bi-oxy-species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun S-G (1998) In: Lipkowski J, Ross PN (eds) Electrocatalysis, ch 6. Wiley, New York

    Google Scholar 

  2. Markovic NM, Ross PN Jr (2002) Surf Sci Rep 45:117

    Article  CAS  Google Scholar 

  3. Feliu JM, Herrero E (2003) In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells, vol 2, ch 42: electrocatalysis. Wiley, Chichester

    Google Scholar 

  4. Jusys Z, Behm RJ (2009) In: Koper MTM (ed) Fuel cell catalysis, ch 13, Wiley

  5. Parsons R, VanderNoot T (1988) J Electroanal Chem 257:9

    Article  CAS  Google Scholar 

  6. Adžić RR, Simić DN, Despić AR, Dražić DM (1975) J Electroanal Chem 65:587

    Article  Google Scholar 

  7. Adžić RR, Marković NM (1985) Electrochim Acta 30:1473

    Article  Google Scholar 

  8. Shibata M, Furuya N, Watanabe M, Motoo S (1989) J Electroanal Chem 263:97

    Article  CAS  Google Scholar 

  9. Choy de Martinez M, Beden B, Hahn F, Lamy C (1988) J Electroanal Chem 249:265

    Article  CAS  Google Scholar 

  10. Xia XH, Iwasita T (1993) J Electrochem Soc 140:2559

    Article  CAS  Google Scholar 

  11. Smith SPE, Abruña HD (1998) J Phys Chem B 102:3506

    Article  CAS  Google Scholar 

  12. López-Cudero A, Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2009) Phys Chem Chem Phys 11:416

    Article  Google Scholar 

  13. Cadle SH, Bruckenstein S (1972) Anal Chem 44:1993

    Article  CAS  Google Scholar 

  14. Szabo S, Nagy F (1978) J Electroanal Chem 87:261

    Article  CAS  Google Scholar 

  15. Clavilier J, Feliu JM, Aldaz A (1988) J Electroanal Chem 243:419

    Article  CAS  Google Scholar 

  16. Campbell SA, Parsons R (1992) J Chem Soc Faraday Trans 88:833

    Article  CAS  Google Scholar 

  17. Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, Feliu JM (2008) Phys Chem Chem Phys 10:1349

    Google Scholar 

  18. Rodríguez P, Herrero E, Solla-Gullón J, Vidal-Iglesias FJ, Aldaz A, Feliu JM (2005) Electrochim Acta 50:4308

    Article  Google Scholar 

  19. Stalnionis G, Tamašauskaitė-Tamašiūnaitė L, Pautienienė V, Sudavičius A, Jusys Z (2004) J Solid State Electrochem 8:892

    Article  CAS  Google Scholar 

  20. Stalnionis G, Tamašauskaitė-Tamašiūnaitė L, Pautienienė V, Jusys Z (2004) J Solid State Electrochem 8:900

    Article  CAS  Google Scholar 

  21. Blasini DR, Rochefort D, Fachini E, Aldena LR, DiSalvo FJ, Cabrera CR, Abruña HD (2006) Surf Sci 600:2670

    Article  CAS  Google Scholar 

  22. Tripković AV, Popović KDj, Stevanović RM, Socha R, Kowal A (2006) Electrochem Comm 8:1492

    Article  Google Scholar 

  23. Schmidt TJ, Stamenkovic V, Attard GA, Markovic NM, Ross PN Jr (2001) Langmuir 17:7613

    Article  CAS  Google Scholar 

  24. Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Angew Chem Int Ed 45:981

    Article  CAS  Google Scholar 

  25. Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Langmuir 22:10399

    Article  CAS  Google Scholar 

  26. Neurock M, Janik M, Wieckowski A (2008) Faraday Discuss 140:363

    Article  CAS  Google Scholar 

  27. Smith SPE, Ben-Dor KF, Abruña HD (1999) Langmuir 15:7325

    Article  CAS  Google Scholar 

  28. El-Deab MS, Kibler LA, Kolb DM (2009) Electrochem Commun 11:776

    Article  CAS  Google Scholar 

  29. Volpe D, Casado-Rivera E, Alden L, Lind C, Hagerdon K, Downie C, Korzeniewski C, DiSalvo FJ, Abruña HD (2004) J Electrochem Soc 151:A971

    Article  CAS  Google Scholar 

  30. Oana M, Hoffmann R, Abruña HD, DiSalvo FJ (2005) Surf Sci 574:1

    Article  CAS  Google Scholar 

  31. Wang L-L, Johnson DD (2008) J Phys Chem C 112:8266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenonas Jusys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pautienienė, V., Tamašauskaitė-Tamašiūnaitė, L., Sudavičius, A. et al. Spontaneous Bi-modification of polycrystalline Pt electrode: fabrication, characterization, and performance in formic acid electrooxidation. J Solid State Electrochem 14, 1675–1680 (2010). https://doi.org/10.1007/s10008-009-0996-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0996-x

Keywords

Navigation