Skip to main content
Log in

The application of synchrotron techniques to the study of lithium-ion batteries

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper gives a brief review of the application of synchrotron X-ray techniques to the study of lithium-ion battery materials. The two main techniques are X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction (XRD). Examples are given for in situ XAS and XRD studies of lithium-ion battery cathodes during cycling. This includes time-resolved methods. The paper also discusses the application of soft X-ray XAS to do ex situ studies on battery cathodes. By applying two signal detection methods, it is possible to probe the surface and the bulk of cathode materials simultaneously. Another example is the use of time-resolved XRD studies of the decomposition of reactions of charged cathodes at elevated temperatures. Measurements were done both in the dry state and in the presence of electrolyte. Brief reports are also given on two new synchrotron techniques. One is inelastic X-ray scattering, and the other is synchrotron X-ray reflectometry studies of the surface electrode interface (SEI) on highly oriented single crystal lithium battery cathode surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Habib MA, Bockris JO’M (1984) J Electroanal Chem 180:287 doi:10.1016/0368-1874(84)83587-X

    Article  CAS  Google Scholar 

  2. Sayers DE, Stern EA, Lytle FW (1971) Phys Rev Lett 27:1204 doi:10.1103/PhysRevLett.27.1204

    Article  CAS  Google Scholar 

  3. Yoon W-S, Grey CP, Balasubramanian M, Yang X-Q, Fischer DA, McBreen J (2004) Electrochem Solid-State Lett 7:A53 doi:10.1149/1.1643592

    Article  CAS  Google Scholar 

  4. Yoon W-S, Balasubramanian M, Chung KY, Yang X-Q, McBreen J, Grey CP, Fischer DA (2005) J Am Chem Soc 127:17479 doi:10.1021/ja0530568

    Article  CAS  Google Scholar 

  5. Yoon W-S, Paik Y, Yang X-Q, Balasubramanian M, McBreen J, Grey CP (2002) Electrochem Solid-State Lett 5:A263 doi:10.1149/1.1513001

    Article  CAS  Google Scholar 

  6. Balasubramanian M, McBreen J, Davidson IJ, Whitfield PS, Kargina I (2002) J Electrochem Soc 149:A176 doi:10.1149/1.1431962

    Article  CAS  Google Scholar 

  7. Ceder G, Chiang Y-M, Sadoway DR, Aydinol MK, Jang Y-I, Huang B (1998) Nature 392:694 doi:10.1038/33647

    Article  CAS  Google Scholar 

  8. Yoon W-S, Kim K-B, Kim M-G, Lee M-K, Shin H-J, Lee J-M, Lee J-S, Yo C-H (2002) J Phys Chem B 106:2526 doi:10.1021/jp013735e

    Article  CAS  Google Scholar 

  9. Yoon W-S, Balasubramanian M, Yang X-Q, Fu Z, Fischer DA, McBreen J (2004) J Electrochem Soc 151:A246 doi:10.1149/1.1637896

    Article  CAS  Google Scholar 

  10. Yoon W-S, Chung KY, McBreen J, Zaghib K, Yang X-Q (2004) Electrochem Solid-State Lett 9:A415 doi:10.1149/1.2216619

    Article  Google Scholar 

  11. Yoon W-S, Balasubramanian M, Yang X-Q, McBreen J, Hanson J (2005) Electrochem Solid-State Lett 8:A83 doi:10.1149/1.1846714

    Article  CAS  Google Scholar 

  12. Balasubramanian M, Johnson CS, Cross JO, Seidler GT, Fister TT, Stern EA, Hamner C, Mariager SO (2007) Appl Phys Lett 91:31904 doi:10.1063/1.2752755

    Article  Google Scholar 

  13. Hightower A, Ahn CC, Fultz B, Rez P (2000) Appl Phys Lett 77:238 doi:10.1063/1.126936

    Article  CAS  Google Scholar 

  14. Gibbs D, Ocko BM, Zehner DM, Mocherie SGJ (1988) Phys Rev B 38:7303 doi:10.1103/PhysRevB.38.7303

    Article  CAS  Google Scholar 

  15. Ocko BM, Wang J (1990) Phys Rev Lett 68:1466 doi:10.1103/PhysRevLett.65.1466

    Article  Google Scholar 

  16. Wang J, Robinson IK, Adzic RR (1998) Surf Sci 412–413:374 doi:10.1016/S0039-6028(98)00450-6

    Article  Google Scholar 

  17. Samant MG, Toney MF, Borges GL, Blum L, Melroy OR (1988) Surf Sci Lett 193:L29 doi:10.1016/0039-6028(88)90314-7

    Article  CAS  Google Scholar 

  18. Nagy Z, You H, Yonco RM, Melendres CA, Yun W, Maroni VA (1991) Electrochim Acta 36:209 doi:10.1016/0013-4686(91)85203-J

    Article  CAS  Google Scholar 

  19. Hirayama M, Sonoyama N, Abe T, Minoura M, Ito M, Mori D, Yamada A, Kanno R, Terashima T, Takano M, Tamura K, Mizuki JI (2007) J Power Sources 168:493 doi:10.1016/j.jpowsour.2007.03.034

    Article  CAS  Google Scholar 

  20. Hirayama M, Sonoyama N, Ito M, Minoura M, Mori D, Yamada A, Tamura K, Mizuki JI, Kanno R (2007) J Electrochem Soc 154:A1065 doi:10.1149/1.2778853

    Article  CAS  Google Scholar 

  21. Hirayama M, Sakamoto K, Hiraide T, Mori D, Yamada A, Kanno R, Sonoyama N, Tamura K, Mizuki JI (2007) Electrochim Acta 53:871 doi:10.1016/j.electacta.2007.07.074

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Brookhaven National Laboratory is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James McBreen.

Additional information

Dedicated to the 85th birthday of John O’M. Bockris

Rights and permissions

Reprints and permissions

About this article

Cite this article

McBreen, J. The application of synchrotron techniques to the study of lithium-ion batteries. J Solid State Electrochem 13, 1051–1061 (2009). https://doi.org/10.1007/s10008-008-0685-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0685-1

Keywords

Navigation