Skip to main content
Log in

Comparative study of different indigo-clay Maya Blue-like systems using the voltammetry of microparticles approach

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Using the voltammetry of microparticles approach, the electrochemical response of complexes prepared with indigo plus different clays in contact with aqueous electrolytes is described. Indigo presents a strong attachment with palygorskite and sepiolite in contrast to a weak attachment to planar clays (montomorillonite and kaolinite). Cyclic voltammetric and chronoamperometric data provide estimates of the variation of the concentration of indigo and dehydroindigo with the depth on clay crystals. The indigoids (indigo and dehydroindigo) penetrate more in palygorskite than in sepiolite, and this penetration is favoured by thermal treatments (very efficient up to 130 °C). The indigo concentration decreases monotonically versus depth, while the dehydroindigo one increases from zero in the external region of the crystals to a maximum at a depth between 40 and 80 nm and then decreasing rapidly. These facts are directly linked to the much higher resistance to acid attack of palygorskite–indigo pigments (Maya Blue) than sepiolite–indigo ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Reyes-Valerio (1993) C De Bonampak al Templo Mayor: el azul Maya en Mesoamérica, Siglo XXI, México

  2. Romero P, Sánchez C (2005) N J Chem 29:57–58 doi:10.1039/b416075b

    Article  Google Scholar 

  3. Sheppard AO (1962) Am Antiq 27:565–566 doi:10.2307/277680

    Article  Google Scholar 

  4. Van Olphen H (1967) Science 154:645–646 doi:10.1126/science.154.3749.645

    Article  Google Scholar 

  5. Kleber R, Masschelein-Kleiner L, Tissen J (1967) Stud Conservat 12:41–55 doi:10.2307/1505326

    Article  CAS  Google Scholar 

  6. José-Yacamán M, Rendón L, Arenas J, Serra Puche MC (1996) Science 273:223–225 doi:10.1126/science.273.5272.223

    Article  Google Scholar 

  7. Polette LA, Meitzner G, José-Yacamán M, Chianelli RR (2002) Microchem J 71:167–174 doi:10.1016/S0026-265X(02)00008-5

    Article  CAS  Google Scholar 

  8. Sánchez del Río MS, Martinetto P, Somogyi A, Reyes-Valerio C, Dooryhée E, Peltier N et al (2004) Spectrochim Acta B 59:1619–1625 doi:10.1016/j.sab.2004.07.027

    Article  Google Scholar 

  9. Sánchez del Rio MS, Sodo A, Eeckhout SG, Neisius T, Martinetto P, Dooryhee E et al (2005) Nucl Instrum Methods Phys Res B 238:50–54 doi:10.1016/j.nimb.2005.06.017

    Article  Google Scholar 

  10. Chiari G, Giustetto R, Riccihiardi G (2003) Eur J Mineral 15:21–33 doi:10.1127/0935-1221/2003/0015-0021

    Article  CAS  Google Scholar 

  11. Fois E, Gamba A, Tilocca A (2003) Micropor Mesopor Mat 57:263–272 doi:10.1016/S1387-1811(02)00596-6

    Article  CAS  Google Scholar 

  12. Hubbard B, Kuang W, Moser A, Facey GA, Detellier C (2003) Clay Miner 51:318–326 doi:10.1346/CCMN.2003.0510308

    Article  CAS  Google Scholar 

  13. Reinen D, Köhl P, Müller C (2004) Z Anorg Allg Chem 630:97–103 doi:10.1002/zaac.200300251

    Article  CAS  Google Scholar 

  14. Giustetto R, Llabres i Xamena FX, Ricchiardi G, Bordiga S, Damin A, Gobetto R et al (2005) J Phys Chem B 109:19360–19368 doi:10.1021/jp048587h

    Article  CAS  Google Scholar 

  15. Giustetto R, Levy D, Chiari G (2006) Eur J Mineral 18:629–640 doi:10.1127/0935-1221/2006/0018-0629

    Article  CAS  Google Scholar 

  16. Doménech A, Doménech MT, Vázquez ML (2006) J Phys Chem B 110:6027 doi:10.1021/jp057301l

    Article  Google Scholar 

  17. Doménech A, Doménech MT, Vázquez ML (2007) Anal Chem 79:2812–2821 doi:10.1021/ac0623686

    Article  Google Scholar 

  18. Doménech A, Doménech MT, Vázquez ML (2007) J Phys Chem C 111:4585–4595 doi:10.1021/jp067369g

    Article  Google Scholar 

  19. Doménech A, Doménech MT, Vázquez ML (2007) J Solid State Electrochem 11:1335–1346 doi:10.1007/s10008-007-0296-2

    Article  Google Scholar 

  20. Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, a series of advances. vol. 20. Marcel Dekker, New York, pp 1–87

    Google Scholar 

  21. Grygar T, Marken F, Schröder U, Scholz F (2002) Collect Czech Chem Commun 67:63 doi:10.1135/cccc20020163

    Article  Google Scholar 

  22. Scholz F, Schröder U, Gulaboski F (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  23. Arnold DE, Bohor BF (1975) Archaeology 28:23–29

    Google Scholar 

  24. Chisholm JE (1992) Can Mineral 30:61–73

    CAS  Google Scholar 

  25. Jones BF, Galán E (1988) Sepiolite and palygorskiye. In: Bailey SW (ed) Hydrous phyllosilicates. Reviews in mineralogy. vol. 19. Mineralogical Society of America, Washington, DC, pp 631–674

    Google Scholar 

  26. Sánchez del Río M, Martinetto P, Reyes-Valerio C, Doryhée E, Suárez M (2006) Archaeometry 48:115–130 doi:10.1111/j.1475-4754.2006.00246.x

    Article  Google Scholar 

  27. Sánchez del Río M, Picquart M, Haro-Poniatowski E, van Elslande E, Uc VH (2006) J Raman Spectr 37:1046–1053 doi:10.1002/jrs.1607

    Article  Google Scholar 

  28. Evans JF, Kuwana T (1977) Anal Chem 49:1632–1635 doi:10.1021/ac50019a042

    Article  CAS  Google Scholar 

  29. Gunasingham H, Fleet B (1982) Analyst (Lond) 107:896–902 doi:10.1039/an9820700896

    Article  CAS  Google Scholar 

  30. Engstrom RC, Strasser VA (1984) Anal Chem 56:136–141 doi:10.1021/ac00266a005

    Article  CAS  Google Scholar 

  31. Barisci JN, Wallace GG, Baughman RH (2000) Electrochim Acta 46:509–517 doi:10.1016/S0013-4686(00)00634-4

    Article  CAS  Google Scholar 

  32. Barisci JN, Wallace GG, Baughman RH (2000) J Electroanal Chem 488:92–98 doi:10.1016/S0022-0728(00)00179-0

    Article  CAS  Google Scholar 

  33. Bond AM, Marken F, Hill E, Compton RG, Hügel H (1997) J Chem Soc Perkin Trans 2:1735–1742 doi:10.1039/a701003f

    Google Scholar 

  34. Grygar T, Kuckova S, Hradil D, Hradilova D (2003) J Solid State Electrochem 7:706–713 doi:10.1007/s10008-003-0380-1

    Article  CAS  Google Scholar 

  35. Doménech A, Doménech MT (2006) J Solid State Electrochem 10:459–468 doi:10.1007/s10008-005-0018-6

    Article  Google Scholar 

  36. Bessel DA, Rolison DR (1997) J Phys Chem B 101:1148–1157 doi:10.1021/jp961716c

    Article  CAS  Google Scholar 

  37. Doménech A, Formentín P, García H, Sabater MJ (2002) J Phys Chem B 106:574–582 doi:10.1021/jp011315j

    Article  Google Scholar 

  38. Doménech A, García H, Alvaro M, Carbonell E (2003) J Phys Chem B 107:3040–3050 doi:10.1021/jp0223657

    Article  Google Scholar 

  39. Lovric M, Scholz F (1997) J Solid State Electrochem 1:108–113 doi:10.1007/s100080050030

    Article  CAS  Google Scholar 

  40. Lovric M, Scholz F (1999) J Solid State Electrochem 3:172–175 doi:10.1007/s100080050144

    Article  CAS  Google Scholar 

  41. Oldham KB (1998) J Solid State Electrochem 2:367–377 doi:10.1007/s100080050113

    Article  CAS  Google Scholar 

  42. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F (2000) J Solid State Electrochem 4:314–324 doi:10.1007/s100080000130

    Article  Google Scholar 

  43. Doménech A (2004) J Phys Chem B 108:20471–20478 doi:10.1021/jp046831z

    Article  Google Scholar 

  44. Suárez M, García-Romero E, Sánchez del Río M, Martinetto P, Doryhee E (2007) Clay Miner 42:287–297 doi:10.1180/claymin.2007.042.3.02

    Article  Google Scholar 

  45. Scholz F, Hermes M (1999) Electrochm Commun 1:345 (See corrigendum in Electrochem Commun 2:814 (2000))

    Article  CAS  Google Scholar 

  46. Lovric M, Hermes M, Scholz F (1998) J Solid State Electrochem 2:402–404

    Google Scholar 

Download references

Acknowledgements

Financial support is gratefully acknowledged from the Generalitat Valenciana GV04B/197 and GV04B/441 I+D+I Projects and the MEC projects CTQ2004-06754-C03-01 and 02 and CTQ2006-15672-C05-05, which are also supported with FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doménech, A., Doménech-Carbó, M.T., del Río, M.S. et al. Comparative study of different indigo-clay Maya Blue-like systems using the voltammetry of microparticles approach. J Solid State Electrochem 13, 869–878 (2009). https://doi.org/10.1007/s10008-008-0616-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0616-1

Keywords

Navigation