Skip to main content
Log in

Effect of hydrostatic extrusion on passivity breakdown on 303 austenitic stainless steel in chloride solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The stability of the passive film formed on austenitic 303 stainless steel in the as-received state and after severe plastic deformation by hydrostatic extrusion (HE) leading to nanostructurization was investigated in an aggressive environment containing Cl ions by anodic polarization. Transmission electron microscopy (TEM) and stereological image analysis were used to examine structural changes introduced by HE. Surface analytical techniques such as light microscopy, scanning electron microscopy, Auger electron spectroscopy (AES), and scanning Auger microscopy (SAM) were used to characterize the morphology, grain size, and chemistry of the surface, including local characterization of nonmetallic inclusions and their surface before and after HE. SAM analysis revealed discontinuities of the passive oxide film on MnS inclusions. TEM and scanning transmission electron microscopy examinations confirm a drastic reduction of grain size accompanied by a distinct refinement of the size of sulfide inclusions in the HE matrix. These changes in the HE 303 stainless steel are apparently responsible for its reduced pitting resistance compared to the as-received material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Frankenthal RP, Kruger J (eds) (1978) Chapter: Stainless steels and ferrous alloys. Passivity of metals. ECS, Princeton, pp 646–770

    Google Scholar 

  2. Sato N, Hashimoto K (eds) (1990) Chapter: Stainless steels. Passivation of metals and semiconductors. The sixth international symposium on passivity, Sapporo, Japan, 1989. Pergamon Press, Oxford, pp 515–591

    Google Scholar 

  3. Heusler KE (ed) (1995) Chapter: The passivity of metal. Passivation of metals and semiconductors. Special issue of Mater Sci Forum 185–188:221–364

  4. Natishan PM, Isaacs HS, Janik-Czachor M, Macagano VA, Marcus P, Seo M (eds) (1998) Chapter: Chemistry and structure of passive oxide films on iron and its alloys. Passivity and its breakdown. ECS, Pennington, pp 143–285

  5. Rossi A, Elsener B, Hahner G, Textor M, Spencer ND (2000) Surf Interface Anal 29:460

    Article  CAS  Google Scholar 

  6. Janik-Czachor M (1995) Mater Sci Forum 1:185

    Google Scholar 

  7. Schmuki P, Hildebrand H, Freidrich A, Virtanen S (2005) Corros Sci 47:1239

    Article  CAS  Google Scholar 

  8. Vuillemin B, Philippe X, Oltra R, Vignal V, Coudreuse L, Dufour LC, Finot E (2003) Corros Sci 45:1143

    Article  CAS  Google Scholar 

  9. Reniers F, Tewell C (2005) J Electron Spectrosc 142:1

    Article  CAS  Google Scholar 

  10. Briggs D, Grant JT (2003) Surface analysis by Auger and X-ray photoelectron spectroscopy, Surface Spectra. IM, Chichester

    Google Scholar 

  11. Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. Wiley, England

    Google Scholar 

  12. Kurzydłowski KJ (2004) Bull Pol Acad Sci Tech Sci 52(4):301

    Google Scholar 

  13. Ivanisienko Yuv, Korznikov AV, Safarov IM, Valiev RZ (1995) Nanostruct Mater 6:433

    Article  Google Scholar 

  14. Suś-Ryszkowska M, Wejrzanowski T, Pakieła Z, Kurzydłowski KJ (2004) Mat Sci Eng A 369:151

    Article  CAS  Google Scholar 

  15. Valiev RZ, Alexandrov IV (1999) Nanostruct Mater 12:35

    Article  Google Scholar 

  16. Hung JCh, Hung Ch (2000) J Mater Process Technol 104:226

    Article  Google Scholar 

  17. Lewandowska M (2006) J Microsc 224:34

    Article  CAS  Google Scholar 

  18. Garbacz H, Lewandowska M, Pachla W, Kurzydłowski KJ (2006) J Microsc 223:272

    Article  CAS  Google Scholar 

  19. Budniak J, Lewandowska M, Pachla W, Kulczyk M, Kurzydłowski KJ (2006) Solid State Phenom 114:57

    Article  CAS  Google Scholar 

  20. Zhang Z, Akiyama E, Watanabe Y, Katada Y, Tsuzaki K (2007) Corros Sci 49:2962

    Article  CAS  Google Scholar 

  21. Krasilnikov K, Lojkowski W, Pakiela Z, Valiev R (2005) Mat Sci Eng A 397:330

    Article  CAS  Google Scholar 

  22. Bastidas JM, Torres CL, Cano E, Polo JL (2002) Corros Sci 44:625

    Article  CAS  Google Scholar 

  23. Shih CC, Shih CM, Su YY, Su LHJ, Chang MS, Lin SJ (2004) Corros Sci 46:427

    Article  CAS  Google Scholar 

  24. Hashimoto K, Asami K (1978) In: Frankenthal RP, Kruger J (eds) Passivity of metals. ECS, Princeton, New Jersey, p 749

    Google Scholar 

  25. Janik-Czachor M (1981) J Electrochem Soc 128:513C

    Article  CAS  Google Scholar 

  26. Janik-Czachor M, Wood GC, Thompson GE (1980) Brit Cor J 15:154

    CAS  Google Scholar 

  27. Engell HJ, Oriani RA (1989) Corros Sci 29:119

    Article  Google Scholar 

  28. Lumsden JB, Staehle RW (1972) Scripta Mat 6:1205

    Article  CAS  Google Scholar 

  29. Wejrzanowski T (2000) Computer assisted quantitative description of the functionally graded materials. Master’s thesis, Warsaw University of Technology

  30. Eklund GS (1974) J Electrochem Soc 121:467

    Article  CAS  Google Scholar 

  31. Scotto J, Ventura G, Traverso E (1979) Corros Sci 19:237

    Article  CAS  Google Scholar 

  32. Szummer A, Janik-Czachor M, Hofmann S (1994) In: Marcus P, Baroux B, Keddam M (eds) Proceedings of European symposium on modification of passive films. vol. 12. Institute of Materials, London, p 280

    Google Scholar 

  33. Jansen EFM, Sloof WG, de Wit JHW (1994) In: Marcus P, Baroux B, Keddam M (eds) Proceedings of European symposium on modification of passive films. vol. 12. Institute of Materials, London, p 290

    Google Scholar 

  34. Janik-Czachor M, Szummer A (1993) Corrosion Review 11:118

    Google Scholar 

  35. Baroux B, Gorse G (1994) In: Marcus P, Baroux B, Keddam M (eds) Proceedings of European symposium on modification of passive films. vol. 12. Institute of Materials, London, p 300

    Google Scholar 

  36. Yang S, Mcdonald DD (2007) Electrochim Acta 52:1871

    Article  CAS  Google Scholar 

  37. Okamoto G, Shibata T (1978) In: Frankenthal RP, Kruger J (eds) Passivity of metals. ECS, Princeton, New Jersey, p 646

    Google Scholar 

  38. Kirchheim R (1987) Electrochim Acta 32:1619

    Article  CAS  Google Scholar 

  39. Pisarek M, Kędzierzawski P, Janik-Czachor M, Kurzydłowski KJ (2008) Corrosion NACE. In press

Download references

Acknowledgement

The authors are grateful to Prof. A. Szummer, Prof. K. Hashimoto, and Dr. T. Wejrzanowski for helpful discussions. This work was financially supported by the Polish Ministry of Education and Science through grant 3T08C 013 29 and by the Foundation for Polish Science through a generous fellowship for M. Pisarek. Surface characterizations were performed using a Microlab 350 located at the Physical Chemistry of Materials Center of the Institute of Physical Chemistry, Polish Academy of Sciences and of the Faculty of Materials Science and Engineering, Warsaw University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pisarek.

Additional information

Contribution to the Fall Meeting of the European Materials Research Society, Symposium D: 9th International Symposium on Electrochemical–Chemical Reactivity of Metastable Materials, Warsaw, 17th–21st September, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisarek, M., Kędzierzawski, P., Janik-Czachor, M. et al. Effect of hydrostatic extrusion on passivity breakdown on 303 austenitic stainless steel in chloride solution. J Solid State Electrochem 13, 283–291 (2009). https://doi.org/10.1007/s10008-007-0488-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0488-9

Keywords

Navigation