Skip to main content
Log in

Formation of Al2O3–TiO2 bilayer using atomic layer deposition and its application to dynamic random access memory

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

To enhance film conformality together with electrical property suitable for dynamic random access memory (DRAM) capacitor dielectric, the effects of oxidant and post heat treatment were investigated on aluminum and titanium oxide (Al2O3–TiO2) bilayer (ATO) thin film formed by atomic layer deposition method. For the conformal deposition of Al2O3 thin film, the O3 oxidant required a higher deposition temperature, more than 450 °C, while H2O or combined oxygen sources (H2O+O3) needed a wide range of deposition temperatures ranging from 250 to 450 °C. Conformal deposition of the TiO2 thin film was achieved at around 325 °C regardless of the oxidants. The charge storage capacitance, measured from the ATO bilayer (4 nm Al2O3 and 2 nm TiO2) deposited at 450 °C for Al2O3 and 325 °C for TiO2 with O3 oxidant on the phosphine-doped poly silicon trench, showed about 15% higher value than that of 5 nm Al2O3 single layer thin film without any increase of leakage current. To maintain the improved electrical property of the ATO bilayer for DRAM application, such as enhanced charge capacitance without increase of leakage current, upper electrode materials and post heat treatments after electrode formation must be selected carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

Similar content being viewed by others

References

  1. Cho MH, Ko DH, Choi YG, Jeong K, Lyo IW, Noh DY, Kim JJ, Whang CN (2001) J Vac Sci Technol A 19:192

    Article  CAS  Google Scholar 

  2. Alers GB, Serder DJ, Chabal Y, Lu HC, Gusev EP, Garfunkel D, Gustafsson T, Urdahl RS (1998) Appl Phys Lett 73:1517

    Article  CAS  Google Scholar 

  3. Campbell SA, Gilmer DC, Wang X, Hsieh M, Kim HS, Gladfelter WL, Yan J (1997) IEEE Trans Electron Devices 44:104

    Article  CAS  Google Scholar 

  4. Kwon KW, Kang CS, Park SO, Kang HK, Ahn ST (1996) IEEE Trans Electron Devices 43:919

    Article  CAS  Google Scholar 

  5. Cho MH, Roh YS, Whang CN, Nahm SW, Ko DH, Lee JH, Lee NI, Fujihara K (2002) Appl Phys Lett 81:472

    Article  CAS  Google Scholar 

  6. Wilk GD, Wallace RM, Anthony JM (2001) J Appl Phys 89:5243

    Article  CAS  Google Scholar 

  7. Kim YS, Yun SJ (2005) J Cryst Growth 274:585

    Article  CAS  Google Scholar 

  8. Kukli K, Ihanus J, Ritala M, Leskela M (1997) J Electrochem Soc 144:300

    Article  CAS  Google Scholar 

  9. Johnson RS, Hong JG, Hinkle C, Lucovsky G (2002) J Vac Sci Technol B 20:1126

    Article  CAS  Google Scholar 

  10. Park HB, Cho M, Park J, Lee SW, Hwang CS, Jeong J (2004) Electrochem Solid-State Lett 7:F25

    Article  CAS  Google Scholar 

  11. Kukli K, Ihanus J, Ritala M, Leskela M (1996) Appl Phys Lett 68:3737

    Article  CAS  Google Scholar 

  12. George SM, Ott AW, Klaus JW (1996) J Phys Chem 100:13121

    Article  CAS  Google Scholar 

  13. Suntola T, Simpson M (1987) Atomic layer epitaxy. Blackie, Glasgow, UK

    Google Scholar 

  14. Rees S Jr (1996) CVD of nonmetals. VCH, New York

    Google Scholar 

  15. Hwang KH, Choi SJ, Lee JD, You YS, Kim YK, Kim HS, Song CL, Lee SI (2001) ALD symposium. Monterey, CA, P-326

  16. Ritala M, Leskela M, Niinisto L, Haussalo P (1993) Chem Mater 5:1174

    Article  CAS  Google Scholar 

  17. Yun SJ, Lee KH, Skarp J, Kim HR, Nam KS (1997) J Vac Sci Technol A 15:2293

    Article  Google Scholar 

  18. Kim JB, Kwon DR, Chakrabarti K, Lee C, Oh KY, Lee JH (2002) J Appl Phys 92:6738

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Jin Lee.

Additional information

Dedicated to Professor Su-Il Pyun on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, C.H., Lee, WJ. Formation of Al2O3–TiO2 bilayer using atomic layer deposition and its application to dynamic random access memory. J Solid State Electrochem 11, 1391–1397 (2007). https://doi.org/10.1007/s10008-007-0359-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0359-4

Keywords

Navigation