Skip to main content
Log in

Effect of the mediator in feedback mode-based SECM interrogation of indium tin-oxide and boron-doped diamond electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using\({\text{Ru}}{\left( {{\text{CN}}} \right)}^{{4 - }}_{{{\text{6 }}{\left( {{\text{aq}}} \right)}}} ,\) ferrocene methanol (FcMeOH),\({\text{Fe}}{\left( {{\text{CN}}} \right)}^{{{\text{3}} - }}_{{{\text{6 }}{\left( {{\text{aq}}} \right)}}} \) and\({\text{Ru}}{\left( {{\text{NH}}_{{\text{3}}} } \right)}^{{3 + }}_{{{\text{6 }}{\left( {{\text{aq}}} \right)}}} ,\) approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and\({\text{Fe}}{\left( {{\text{CN}}} \right)}^{{{\text{3}} - }}_{{{\text{6 }}{\left( {{\text{aq}}} \right)}}} \) as mediators, and the use of \({\text{Ru}}{\left( {{\text{NH}}_{{\text{3}}} } \right)}^{{3 + }}_{{{\text{6}}{\left( {{\text{aq}}} \right)}}} \) results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators \({\text{Fe}}{\left( {{\text{CN}}} \right)}^{{{\text{3}} - }}_{{{\text{6}}{\left( {{\text{aq}}} \right)}}} \) and \({\text{Fe}}{\left( {{\text{CN}}} \right)}^{{{\text{4}} - }}_{{{\text{6}}{\left( {{\text{aq}}} \right)}}} .\) In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Csóka B, Kovács B, Nagy G (2003) Electroanalysis 15:1335

    Article  Google Scholar 

  2. Takii Y, Takoh K, Nishizawa M, Matsue T (2003) Electrochim Acta 48:3381

    Article  CAS  Google Scholar 

  3. Kaya T, Torisawa Y-S, Oyamatsu D, Nishizawa M, Matsue T (2003) Biosens Bioelectron 18:1379

    Article  CAS  Google Scholar 

  4. Kranz C, Wittstock G, Wohlschläger H, Schuhmann W (1997) Electrochim Acta 42:3105

    Article  CAS  Google Scholar 

  5. Barker AL, Unwin PR, Zhang J (2001) Electrochem Commun 3:372

    Article  CAS  Google Scholar 

  6. Zhou J, Zu Y, Bard AJ (2000) J Electroanal Chem 491:22

    Article  CAS  Google Scholar 

  7. Wijayawardhana CA, Wittstock G, Halsall HB, Heineman WR (2000) Electroanalysis 12:640

    Article  CAS  Google Scholar 

  8. Wittstock G, Wilhelm T, Bahrs S, Steinrücke P (2001) Electroanalysis 13:669

    Article  CAS  Google Scholar 

  9. Yasukawa T, Kaya T, Matsue T (2000) Electroanalysis 12:653

    Article  CAS  Google Scholar 

  10. Fernandez JL, Walsh DA, Bard AJ (2005) J Am Chem Soc 127:357

    Article  CAS  Google Scholar 

  11. Kallio T, Slevin C, Sundholm G, Holmlund P, Kontturi K (2003) Electrochem Commun 5:561

    Article  CAS  Google Scholar 

  12. Nugues S, Denuault G (1996) J Electroanal Chem 408:125

    Article  Google Scholar 

  13. Schulte A, Belger S, Etienne M, Schuhmann W (2004) Mater Sci Eng A 378:523

    Article  Google Scholar 

  14. Souto RM, Gonzalez-Garcia Y, Gonzalez S, Burstein GT (2004) Corros Sci 46:2621

    Article  CAS  Google Scholar 

  15. Semenikhin OA, Stromberg C, Ehrenburg MR, König U, Schultze JW (2001) Electrochim Acta 47:171

    Article  CAS  Google Scholar 

  16. O’Mullane A, Neufeld AK, Bond AM (2005) Anal Chem 77:5447

    Article  CAS  Google Scholar 

  17. Ufheil J, Boldt FM, Börsch M, Borgwarth K, Heinze J (2000) Bioelectrochemistry 52:103

    Article  CAS  Google Scholar 

  18. Neufeld AK, O’Mullane AP, Bond AM (2005) J Am Chem Soc 127:13846

    Article  CAS  Google Scholar 

  19. Martin RD, Unwin PR (1997) J Electroanal Chem 439:123

    Article  CAS  Google Scholar 

  20. Rajendran L, Ananthi SP (2004) J Electroanal Chem 561:113

    Article  CAS  Google Scholar 

  21. Wipf DO, Bard AJ (1991) J Electrochem Soc 138:469

    Article  CAS  Google Scholar 

  22. Kwak J, Bard AJ (1989) Anal Chem 61:1221

    Article  CAS  Google Scholar 

  23. Mirkin MV, Horrocks BR (2000) Anal Chim Acta 406:119

    Article  CAS  Google Scholar 

  24. Pleskov YV (2002) Russ J Electrochem 38:1049

    Article  CAS  Google Scholar 

  25. Combellas C, Kanoufi F, Mazouzi D, Thiébault A (2003) J Electroanal Chem 556:43

    Article  CAS  Google Scholar 

  26. Goeting CH, Marken F, Compton RG, Foord JS, Salter C (1999) Chem Commun 1999:1697

    Article  Google Scholar 

  27. Mandler D, Bard AJ (1989) J Electrochem Soc 136:3143

    Article  CAS  Google Scholar 

  28. Wilhelm T, Wittstock G (2001) Electrochim Acta 47:275

    Article  CAS  Google Scholar 

  29. Mukhopadhyay I, Aravinda CL, Borissov D, Freyland W (2005) Electrochim Acta 50:1275

    Article  CAS  Google Scholar 

  30. Compton RG, Foord JS, Marken F (2003) Electroanalysis 15:1349

    Article  CAS  Google Scholar 

  31. Fortin E, Chane-Tune J, Mailley P, Szunerits S, Marcus B, Petit J-P, Mermoux M, Vieil E (2004) Bioelectrochemistry 63:303

    Article  CAS  Google Scholar 

  32. Chatterjee A, Compton RG, Foord JS, Hiramatsu M, Marken F (2003) Phys Status Solidi 199:49

    Article  CAS  Google Scholar 

  33. Fischer AE, Show Y, Swain GM (2004) Anal Chem 76:2553

    Article  CAS  Google Scholar 

  34. Haymond S, Babcock GT, Swain GM (2003) Electroanalysis 15:249

    Article  CAS  Google Scholar 

  35. Holt KB, Bard AJ, Show Y, Swain GM (2004) J Phys Chem B 108:15117

    Article  CAS  Google Scholar 

  36. Wang K, Xu J-J, Sun D-C, Wei H, Xia X-H (2005) Biosens Bioelectron 20:1366

    Article  CAS  Google Scholar 

  37. Popovich ND, Wong S, Ufer S, Sakhrani V, Paine D (2003) J Electrochem Soc 150:H255

    Article  CAS  Google Scholar 

  38. Popovich ND, Wong S, Yen BKH, Yeom H-Y, Paine D (2002) Anal Chem 74:3127

    Article  CAS  Google Scholar 

  39. Shen Y, Jacobs DB, Malliaras GG, Koley G, Spencer MG, Ioannidis A (2001) Adv Mater 13:1234

    Article  CAS  Google Scholar 

  40. Chiguvare Z, Parisi J, Dyakonov V (2003) J Appl Phys 94:2440

    Article  CAS  Google Scholar 

  41. Goeting CH, Marken F, Gutierrez-Sosa A, Compton RG, Foord JS (2000) Diam Relat Mater 9:390

    Article  CAS  Google Scholar 

  42. Granger MC, Swain GM (1999) J Electrochem Soc 146:4551

    Article  CAS  Google Scholar 

  43. Wilson NR, Clewes SL, Newton ME, Unwin PR, Macpherson JV (2006) J Phys Chem B 110:5639

    Article  CAS  Google Scholar 

  44. Colley AL, Williams CG, Johansson UD, Newton ME, Unwin PR, Wilson NR, Macpherson JV (2006) Anal Chem 78:2539

    Article  CAS  Google Scholar 

  45. Latto MN, Pastor-Moreno G, Riley DJ (2004) Electroanalysis 16:434

    Article  CAS  Google Scholar 

  46. Mirkin MV, Fan F-RF, Bard AJ (1992) J Electroanal Chem 328:47

    Article  CAS  Google Scholar 

  47. Wei C, Bard AJ (1995) J Electrochem Soc 142:2523

    Article  CAS  Google Scholar 

  48. Bard AJ, Mirkin MV (eds) (2001) Scanning electrochemical microscopy. Marcel Dekker, New York

    Google Scholar 

  49. Oskam G, Long JG, Natarajan A, Searson PC (1998) J Phys D Appl Phys 31:1927

    Article  CAS  Google Scholar 

  50. Sato N (1998) Electrochemistry at metal and semiconductor electrodes. Elsevier, Amsterdasm

    Google Scholar 

Download references

Acknowledgements

A.K. Neufeld gratefully acknowledges Alan Bond for his friendship, bright enthusiasm and subtle guidance. The authors thank Steven Feldberg and Jie Zhang for insightful comments and J. Ward for assistance in access to SEM facilities. Financial support by Commonwealth Scientific & Industrial Research Organization division of Manufacturing and Infrastructure Technology and the Australian Research Council is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Neufeld.

Additional information

Dedicated to Alan, a good friend and colleague on his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neufeld, A.K., O’Mullane, A.P. Effect of the mediator in feedback mode-based SECM interrogation of indium tin-oxide and boron-doped diamond electrodes. J Solid State Electrochem 10, 808–816 (2006). https://doi.org/10.1007/s10008-006-0180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0180-5

Keywords

Navigation