Skip to main content
Log in

Electrochemical charging and electrocatalysis at hybrid films of polymer-interconnected polyoxometallate-stabilized carbon submicroparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Using the layer-by-layer technique, carbon submicroparticles, that have been modified and stabilized with monolayers of Keggin-type phosphododecamolybdate (PMo12O 3−40 ), can be dispersed in multilayer films of organic polymers, poly(3,4-ethylenedioxythiophene), i.e., PEDOT, or poly(diallyldimethylammonium) chloride, i.e., PDDA, deposited on glassy carbon or indium-tin oxide conductive glass electrodes. The approach involves alternate treatments in the colloidal suspension of PMo12O 3−40 -covered carbon submicroparticles in the solution of monomer, 3,4-ethylenedioxythiophene or in solution of PDDA polymer. Electrostatic attractive interactions between anionic phosphomolybdate-modified carbon submicroparticles and cationic polymer layers permit not only uniform and controlled growth of the hybrid organic–inorganic film but also contribute to its overall stability. The system composed of PMo12O 3−40 -covered carbon submicroparticles dispersed in PEDOT is characterized by fast dynamics of charge transport and has been used to construct symmetric microelectrochemical redox capacitor. The PDDA-based system has occurred to be attractive for electrocatalytic reduction of hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ulman A (1991) An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly. Academic, New York

    Google Scholar 

  2. Ingersoll D, Kulesza PJ, Faulkner LR (1994) J Electrochem Soc 141:140

    Article  CAS  Google Scholar 

  3. Kuhn A, Anson FC (1996) Langmuir 12:5481

    Article  CAS  Google Scholar 

  4. Cheng L, Niu L, Gong J, Dong S (1999) Chem Mater 11:1465

    Article  CAS  Google Scholar 

  5. Cheng L, Pacey GE, Cox JA (2001) Electrochim Acta 46:4223

    Article  CAS  Google Scholar 

  6. Sfez R, De-Zhong L, Turyan I, Mandler D, Yitzchaik S (2001) Langmuir 17:2556

    Article  CAS  Google Scholar 

  7. Ge M, Zhong B, Klemperer W, Gewirth AA (1996) J Am Chem Soc 118:5812

    Article  CAS  Google Scholar 

  8. Lira-Cantu M, Gomez-Romero P (1998) Chem Mater 10:698

    Article  CAS  Google Scholar 

  9. Kuhn A, Mano N, Vidal C (1999) J Electroanal Chem 462:187

    Article  CAS  Google Scholar 

  10. Boyle A, Genies E, Lapkowski M (1989) Synth Metals 28:C769

    Article  CAS  Google Scholar 

  11. Gomez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza PJ, Casan-Pastor N, Lira-Cantu M (2003) Electrochem Comm 5:149

    Article  CAS  Google Scholar 

  12. Decher G (1997) Science 277:1232

    Article  CAS  Google Scholar 

  13. Schumacher W (1997) Carbon black. In: Laden P (ed) Chemistry and technology of water based ink. Blackie, London, pp 153–174

    Google Scholar 

  14. Queen EJ (1987) Carbon black. Van Nostrand-Reinhold, New York

    Google Scholar 

  15. Laforgue A, Simon P, Fauvarque JF, Mastragostino M, Soavi F, Sarrau JF, Lailler P, Conte M, Rossi E, Saguatti S (2003) J Electrochem Soc 150:A645–A651

    Article  CAS  Google Scholar 

  16. De Heer WA, Chatelain A, Ugarte D (1995) Science 270:1179

    Article  Google Scholar 

  17. Niu C, Sichel EK, Hoch R, Moy D, Tennet H (1997) Appl Phys Lett 70:1480

    Article  CAS  Google Scholar 

  18. Collins PG, Zetti A, Bando H, Thess A, Smalley RE (1997) Science 278:100

    Article  CAS  Google Scholar 

  19. Hafner JH, Cheung CL, Leiber CM (1998) Nature 393:49

    Article  CAS  Google Scholar 

  20. Frackowiak E (2004) Carbon nanotubes for storage of energy: super capacitors, encyclopedia of nanoscience and nanotechnology. Dekker, New York, pp 537–546

    Google Scholar 

  21. Tibbetts GG, Meisner GP, Olk CH (2001) Carbon 39:2291

    Article  CAS  Google Scholar 

  22. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787

    Article  PubMed  CAS  Google Scholar 

  23. Dominko R, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) J Electrochim Acta 48:3709

    Article  CAS  Google Scholar 

  24. Gall RD, Hill CL, Walker JE (1996) Chem Mater 8:2523

    Article  CAS  Google Scholar 

  25. Ge M, Zhong B, Klemperer W, Gewirth AA (1996) J Am Chem Soc 118:5812

    Article  CAS  Google Scholar 

  26. Kulesza PJ, Chojak M, Miecznikowski K, Lewera A, Malik MA, Kuhn A (2002) Electrochem Comm 4:510

    Article  CAS  Google Scholar 

  27. Karnicka K, Chojak M, Miecznikowski K, Skunik M, Baranowska B, Kolary A, Piranska A, Palys B, Adamczyk L, Kulesza PJ (2005) Bioelectrochem 66:79

    Article  CAS  Google Scholar 

  28. Kulesza PJ, Chojak M, Karnicka K, Miecznikowski K, Palys B, Lewera A, Wieckowski A (2004) Chem Mater 16:4128

    Article  CAS  Google Scholar 

  29. Garrigue P, Delville MH, Labrugere C, Cloute E, Kulesza PJ, Morand JP, Kuhn A (2004) Chem Mater 16:2984

    Article  CAS  Google Scholar 

  30. Kloster GM, Anson FC (1999) Electrochim Acta 44:2271

    Article  CAS  Google Scholar 

  31. Huang MH, Bi LH, Shen Y, Liu BF, Dong SJ (2004) J Phys Chem 108:9780

    CAS  Google Scholar 

  32. Qin S, Qin D, Ford WT, Zhang Y, Kotov N (2005) Chem Mater 17:2131

    Article  CAS  Google Scholar 

  33. Qian L, Yang X (2005) Electrochem Comm 7:547

    Article  CAS  Google Scholar 

  34. Kulesza PJ, Skunik M, Baranowska B, Miecznikowski K, Chojak K, Karnicka K, Frackowiak E, Béguin F, Kuhn A, Delville MH, Starobrzynska B, Ernst BA (2005) Electrochim Acta (in press)

  35. Kang Z, Wang Y, Wang E, Lian S, Gao L, You W, Hu C, Xu L (2004) Solid State Comm 129:559

    Article  CAS  Google Scholar 

  36. Pope MT (1983) Heteropoly and isopoly oxometallates, Chap. 2 and 3. Springer, Berlin Heidelberg New York

  37. Kulesza PJ, Malik MA (1999) Interfacial electrochemistry, Chap 37. In: Wieckowski A (ed) Solid-State Voltammetry. Marcel Dekker, New York

  38. Kulesza PJ, Cox JA (1998) Electroanalysis 10:73

    Article  CAS  Google Scholar 

  39. Martel D, Kuhn A, Kulesza PJ, Galkowski M, Malik MA (2001) Electrochim Acta 46:4197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministry of Science and Information Technology (Poland) under the State Committee for Scientific Research (KBN) grant 7 T09A 05426. Support from the French–Polish Polonium Project is also acknowledged. M.Ch. appreciates fellowship from the Foundation for Polish Science (FNP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel J. Kulesza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skunik, M., Baranowska, B., Fattakhova, D. et al. Electrochemical charging and electrocatalysis at hybrid films of polymer-interconnected polyoxometallate-stabilized carbon submicroparticles. J Solid State Electrochem 10, 168–175 (2006). https://doi.org/10.1007/s10008-005-0059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0059-x

Keywords

Navigation