Skip to main content

Advertisement

Log in

Prevalence of dental alterations in patients under bisphosphonates therapy: a systematic review

  • Review Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

This systematic review aimed to estimate the prevalence and describe dentoalveolar lesions associated with bisphosphonates therapy. A systematic review of the literature was conducted using the following databases: PubMed, Embase, Cochrane, CINAHL, Scopus, Web of Science, Lilacs, SciElo, and Grey Literature. Quality of individual studies analysis was performed by using Newcastle–Ottawa Scale. Certainty of cumulative evidence was achieved by applying Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The software R Statistics version 4.0.5 (The R Foundation) was used for proportion estimations per study and corresponding confidence intervals were estimated through the Clopper-Pearson method. Four articles were included for the qualitative synthesis. Two studies were considered of good quality, one of fair, and one of poor quality. A total of 231 patients were encompassed. Widening of the periodontal ligament space (22.2–39.7%), periradicular radiolucencies (20–22.9%), and pulp calcifications (33.3–69.2%) were the most frequent alterations. Certainty of evidence was rated as very low. Based on limited evidence, this systematic review reports a variety of dentoalveolar alterations in patients under bisphosphonate therapy. These features might impact on dental clinical practice. However, the level of evidence is considered very low due to important limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, RG, upon reasonable request.

References

  1. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97:2692–2696. https://doi.org/10.1172/JCI118722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Russell RGG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759. https://doi.org/10.1007/s00198-007-0540-8

    Article  CAS  PubMed  Google Scholar 

  3. Kuźnik A, Październiok-Holewa A, Jewula P, Kuźnik N (2020) Bisphosphonates—much more than only drugs for bone diseases. Eur J Pharmacol 866:. https://doi.org/10.1016/j.ejphar.2019.172773

  4. Clézardin P, Gligorov J, Delmas P (2000) Mechanisms of action of bisphosphonates on tumor cells and prospects for use in the treatment of malignant osteolysis. Joint Bone Spine 67:22–29

    PubMed  Google Scholar 

  5. Soares AP, do Espírito Santo RF, Line SRP et al (2016) Bisphosphonates: pharmacokinetics, bioavailability, mechanisms of action, clinical applications in children, and effects on tooth development. Environ Toxicol Pharmacol 42:212–217. https://doi.org/10.1016/j.etap.2016.01.015

    Article  CAS  PubMed  Google Scholar 

  6. Baroncelli GI, Bertelloni S (2014) The use of bisphosphonates in pediatrics. Horm Res Paediatr 82:290–302. https://doi.org/10.1159/000365889

    Article  CAS  PubMed  Google Scholar 

  7. Soares AP, Do Espírito Santo RF, Line SRP et al (2016) Effects of pamidronate on dental enamel formation assessed by light microscopy, energy-dispersive X-ray analysis, scanning electron microscopy, and microhardness testing. Microsc Microanal 22:640–648. https://doi.org/10.1017/S1431927616000726

    Article  CAS  PubMed  Google Scholar 

  8. Lucisano F, Assed R, Da B et al (2012) Systemically alendronate was incorporated into dental tissues but did not cause morphological or mechanical changes in rats teeth. Microsc Res Tech 75:1265–1271. https://doi.org/10.1002/jemt.22059

    Article  CAS  PubMed  Google Scholar 

  9. Fantasia JE (2009) Bisphosphonates-what the dentist needs to know: practical considerations. J Oral Maxillofac Surg 67:53–60. https://doi.org/10.1016/j.joms.2009.01.011

    Article  PubMed  Google Scholar 

  10. Watters AL, Hansen HJ, Williams T et al (2013) Intravenous bisphosphonate-related osteonecrosis of the jaw: long-term follow-up of 109 patients. Oral Surg Oral Med Oral Pathol Oral Radiol 115:192–200. https://doi.org/10.1016/j.oooo.2012.05.017

    Article  PubMed  Google Scholar 

  11. Oral health management of patients at risk of medication-related osteonecrosis of the jaw (2017) Br Dent J 222:930. https://doi.org/10.1038/sj.bdj.2017.539

  12. Ruggiero SL, Dodson TB, Fantasia J et al (2014) American association of oral and maxillofacial surgeons position paper on medication-related osteonecrosis of the jaw - 2014 update. J Oral Maxillofac Surg 72:1938–1956. https://doi.org/10.1016/j.joms.2014.04.031

    Article  PubMed  Google Scholar 

  13. Rabelo GD, Assunção JNR, Chavassieux P et al (2014) Bisphosphonate-related osteonecrosis of the jaws and its array of manifestations. J Maxillofac Oral Surg 14:699–705. https://doi.org/10.1007/s12663-014-0707-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gross HB (2008) Bisphosphonate-induced osteonecrosis: dental considerations. Compend Contin Educ Dent 29:112–113

    PubMed  Google Scholar 

  15. Tezvergil-Mutluay A, Seseogullari-Dirihan R, Feitosa VP et al (2014) Zoledronate and ion-releasing resins impair dentin collagen degradation. J Dent Res 93:999–1004. https://doi.org/10.1177/0022034514546043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zenobi W, Feitosa VP, Moura MEM et al (2018) The effect of zoledronate-containing primer on dentin bonding of a universal adhesive. J Mech Behav Biomed Mater 77:199–204. https://doi.org/10.1016/j.jmbbm.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  17. Emre Erik C, Onur Orhan E, Maden M (2019) Qualitative analysis of smear layer treated with different etidronate concentrations: a scanning electron microscopy study. Microsc Res Tech 82:1535–1541. https://doi.org/10.1002/jemt.23318

    Article  CAS  PubMed  Google Scholar 

  18. Girard S, Paqué F, Badertscher M et al (2005) Assessment of a gel-type chelating preparation containing 1-hydroxyethylidene-1, 1-bisphosphonate. Int Endod J 38:810–816. https://doi.org/10.1111/j.1365-2591.2005.01021.x

    Article  CAS  PubMed  Google Scholar 

  19. Rykke M, Rölla G (1990) Effect of two organic phosphonates on protein adsorption in vitro and on pellicle formation in vivo. Scand J Dent Res 98:486–496. https://doi.org/10.1111/j.1600-0722.1990.tb01003.x

    Article  CAS  PubMed  Google Scholar 

  20. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18:e1003583. https://doi.org/10.1371/journal.pmed.1003583

    Article  PubMed  PubMed Central  Google Scholar 

  21. Booth A, Clarke M, Dooley G et al (2012) The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev 1:2. https://doi.org/10.1186/2046-4053-1-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wells G, Shea B, O’Connell D, et al (2000) The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Acessed 23 February 2021.

  23. Modesti PA, Reboldi G, Cappuccio FP et al (2016) Panethnic differences in blood pressure in europe: a systematic review and meta-analysis. PLoS One 11:e0147601. https://doi.org/10.1371/journal.pone.0147601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Page M, McKenzie J, Bossuyt P et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fleisher KE, Welch G, Kottal S et al (2010) Predicting risk for bisphosphonate-related osteonecrosis of the jaws: CTX versus radiographic markers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:509–516. https://doi.org/10.1016/j.tripleo.2010.04.023

    Article  PubMed  Google Scholar 

  26. Koth VS, Figueiredo MA, Salum FG, Cherubini K (2017) Interrelationship of clinical, radiographic and haematological features in patients under bisphosphonate therapy. Dentomaxillofac Radiol 46:20160260. https://doi.org/10.1259/dmfr.20160260

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marçal FF, Ribeiro EM, Costa FWG et al (2019) Dental alterations on panoramic radiographs of patients with osteogenesis imperfecta in relation to clinical diagnosis, severity, and bisphosphonate regimen aspects: a STROBE-compliant case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol 128:621–630. https://doi.org/10.1016/j.oooo.2019.07.001

    Article  PubMed  Google Scholar 

  28. de Camargo MP, Silva CAB, Soares AB et al (2015) Tooth alterations in areas of bisphosphonate-induced osteonecrosis. Clin Oral Investig 19:489–495. https://doi.org/10.1007/s00784-014-1270-x

    Article  Google Scholar 

  29. Holstein SA (2019) A patent review of bisphosphonates in treating bone disease. Expert Opin Ther Pat 29:315–325. https://doi.org/10.1080/13543776.2019.1608180

    Article  CAS  PubMed  Google Scholar 

  30. Mortazavi H, Baharvand M (2016) Review of common conditions associated with periodontal ligament widening. Imaging Sci Dent 46:229–237. https://doi.org/10.5624/isd.2016.46.4.229

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu C, Abbott PV (2007) An overview of the dental pulp: its functions and responses to injury. Aust Dent J 52:S4–S6. https://doi.org/10.1111/j.1834-7819.2007.tb00525.x

    Article  CAS  PubMed  Google Scholar 

  32. Pourgonabadi S, Ghorbani A, TayaraniNajarn Z, Mousavi SH (2018) In vitro assessment of alendronate toxic and apoptotic effects on human dental pulp stem cells. Iran J Basic Med Sci 21:905–910. https://doi.org/10.22038/ijbms.2018.22877.5816

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cvikl B, Agis H, Stögerer K et al (2011) The response of dental pulp-derived cells to zoledronate depends on the experimental model. Int Endod J 44:33–40. https://doi.org/10.1111/j.1365-2591.2010.01792.x

    Article  CAS  PubMed  Google Scholar 

  34. Abdik H, Avşar Abdik E, Demirci S et al (2019) The effects of bisphosphonates on osteonecrosis of jaw bone: a stem cell perspective. Mol Biol Rep 46:763–776. https://doi.org/10.1007/s11033-018-4532-x

    Article  CAS  PubMed  Google Scholar 

  35. Gopikrishna V, Pradeep G, Venkateshbabu N (2009) Assessment of pulp vitality: a review. Int J Paediatr Dent 19:3–15. https://doi.org/10.1111/j.1365-263X.2008.00955.x

    Article  PubMed  Google Scholar 

  36. Ricucci D, Loghin S, Siqueira JF (2014) Correlation between clinical and histologic pulp diagnoses. J Endod 40:1932–1939. https://doi.org/10.1016/j.joen.2014.08.010

    Article  PubMed  Google Scholar 

  37. Galler KM, Weber M, Korkmaz Y et al (2021) Inflammatory response mechanisms of the dentine–pulp complex and the periapical tissues. Int J Mol Sci 22:1480. https://doi.org/10.3390/ijms22031480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang W, Wu Y, Smales RJ (2010) Identifying and Reducing Risks for Potential Fractures in Endodontically Treated Teeth. J Endod 36:609–617. https://doi.org/10.1016/j.joen.2009.12.002

    Article  PubMed  Google Scholar 

  39. Coelho-De-Souza FH, Gonçalves DS, Sales MP et al (2015) Direct anterior composite veneers in vital and non-vital teeth: a retrospective clinical evaluation. J Dent 43:1330–1336. https://doi.org/10.1016/j.jdent.2015.08.011

    Article  PubMed  Google Scholar 

  40. Greta DC, Colosi HA, Gasparik C, Dudea D (2018) Color comparison between non-vital and vital teeth. J Adv Prosthodont 10:218–226. https://doi.org/10.4047/jap.2018.10.3.218

    Article  PubMed  PubMed Central  Google Scholar 

  41. McCabe PS, Dummer PMH (2012) Pulp canal obliteration: an endodontic diagnosis and treatment challenge. Int Endod J 45:177–197. https://doi.org/10.1111/j.1365-2591.2011.01963.x

    Article  CAS  PubMed  Google Scholar 

  42. Almeida LY, Silveira HA, Nelem Colturato CB, León JE (2019) Hypercementosis and cementoblastoma: importance of the histopathologic analysis for the correct diagnosis. J Oral Maxillofac Surg 77:1322–1323. https://doi.org/10.1016/j.joms.2019.02.046

    Article  PubMed  Google Scholar 

  43. Wesselink PR, Beertsen W (1989) Theinnfluenceoof 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) on dental root resorption in the mouse. Calcif Tissue Int 45:104–110. https://doi.org/10.1007/BF02561409

    Article  CAS  PubMed  Google Scholar 

  44. Alatli-Kut I, Hultenby K, Hammarström L (1994) Disturbances of cementum formation induced by single injection of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) in rats: light and scanning electron microscopic studies. Scand J Dent Res 102:260–268. https://doi.org/10.1111/j.1600-0722.1994.tb01466.x

    Article  CAS  PubMed  Google Scholar 

  45. Elsayed S, Alolayan A, Farghal L, Ayed Y (2019) Generalised hypercementosis in a young female seeking extraction: revision and update of surgical technique. J Coll Physicians Surg Pakistan 29:1111–1113. https://doi.org/10.29271/jcpsp.2019.11.1111

    Article  Google Scholar 

  46. Hichijo N, Kudo Y, Tanaka E (2021) Orthodontic treatment of open bite involved in diffuse hypercementosis: a case report. J Am Dent Assoc 152:166–175. https://doi.org/10.1016/j.adaj.2020.08.014

    Article  PubMed  Google Scholar 

  47. Hiraga T, Ninomiya T, Hosoya A, Nakamura H (2010) Administration of thebisphosphonate zoledronic acid during tooth development inhibits tooth eruption and formation and induces dental abnormalities in rats. Calcif Tissue Int 86:502–510. https://doi.org/10.1007/s00223-010-9366-z

    Article  CAS  PubMed  Google Scholar 

  48. Grier RL 4th, Wise GE (1998) Inhibition of tooth eruption in the rat by a bisphosphonate. J Dent Res 77:8–15. https://doi.org/10.1177/00220345980770011201

    Article  CAS  PubMed  Google Scholar 

  49. Bradaschia-Correa V, Massa LF, Arana-Chavez VE (2007) Effects of alendronate on tooth eruption and molar root formation in young growing rats. Cell Tissue Res 330:475–485. https://doi.org/10.1007/s00441-007-0499-y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MAP, data collection, data analysis, interpretation and paper drafting; NCTB, data collection, data analysis, and interpretation; GRM, interpretation and critical revision of the article; MCM, study design, interpretation, and critical revision of the article. RG, conception, study design, critical revision of the article. All authors have approved the submitted final version.

Corresponding author

Correspondence to Rogério Gondak.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauli, M.A., Bordignon, N.C.T., Martini, G.R. et al. Prevalence of dental alterations in patients under bisphosphonates therapy: a systematic review. Oral Maxillofac Surg 27, 399–409 (2023). https://doi.org/10.1007/s10006-022-01084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-022-01084-9

Keywords

Navigation