Skip to main content
Log in

S288T mutation altering MmpL3 periplasmic domain channel and H-bond network: a novel dual drug resistance mechanism

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Mycobacterial membrane proteins Large 3 (MmpL3) is responsible for the transport of mycobacterial acids out of cell membrane to form cell wall, which is essential for the survival of Mycobacterium tuberculosis (Mtb) and has become a potent anti-tuberculosis target. SQ109 is an ethambutol (EMB) analogue, as a novel anti-tuberculosis drug, can effectively inhibit MmpL3, and has completed phase 2b-3 clinical trials. Drug resistance has always been the bottleneck problem in clinical treatment of tuberculosis. The S288T mutant of MmpL3 shows significant resistance to the inhibitor SQ109, while the specific action mechanism remains unclear. The results show that MmpL3 S288T mutation causes local conformational change with little effect on the global structure. With MmpL3 bound by SQ109 inhibitor, the distance between D710 and R715 increases resulting in H-bond destruction, but their interactions and proton transfer function are still restored. In addition, the rotation of Y44 in the S288T mutant leads to an obvious bend in the periplasmic domain channel and an increased number of contact residues, reducing substrate transport efficiency. This work not only provides a possible dual drug resistance mechanism of MmpL3 S288T mutant but also aids the development of novel anti-tuberculosis inhibitors.

Methods

In this work, molecular dynamics (MD) and quantum mechanics (QM) simulations both were performed to compare inhibitor (i.e., SQ109) recognition, motion characteristics, and H-bond energy change of MmpL3 after S288T mutation. In addition, the WT_SQ109 complex structure was obtained by molecular docking program (Autodock 4.2); Molecular Mechanics/ Poisson Boltzmann Surface Area (MM-PBSA) and Solvated Interaction Energy (SIE) methods were used to calculate the binding free energies (∆Gbind); Geometric criteria were used to analyze the changes of hydrogen bond networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. World Health Organization (2020) Global tuberculosis report 2020. World Health Organization, Geneva

    Google Scholar 

  2. Guo D, Duan H, Cheng Y, Wang Y, Hu J, Shi H (2022) Omicron-included mutation-induced changes in epitopes of SARS-CoV-2 spike protein and effectiveness assessments of current antibodies. Mol Biomed 3(1):12. https://doi.org/10.1186/s43556-022-00074-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ning S, Yu B, Wang Y, Wang F (2021) SARS-CoV-2: Origin, evolution, and targeting inhibition. Front Cell Infect Microbiol 11:676451. https://doi.org/10.3389/fcimb.2021.676451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization (2021) Global tuberculosis report 2021. World Health Organization, Geneva

    Google Scholar 

  5. Lee RE, Protopopova M, Crooks E, Slayden RA, Terrot M, Barry CE (2003) Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J Comb Chem 5(2):172–187. https://doi.org/10.1021/cc020071p

    Article  CAS  PubMed  Google Scholar 

  6. Chen P (2006) Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J Antimicrob Chemother 58(2):332–337. https://doi.org/10.1093/jac/dkl227

    Article  CAS  PubMed  Google Scholar 

  7. Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, Barnes SW, Walker JR, Alland D, Barry CE, Boshoff HI (2012) SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56(4):1797–1809. https://doi.org/10.1128/AAC.05708-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Protopopova M, Hanrahan C, Nikonenko B, Samala R, Chen P, Gearhart J, Einck L, Nacy CA (2005) Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J Antimicrob Chemother 56(5):968–974. https://doi.org/10.1093/jac/dki319

    Article  CAS  PubMed  Google Scholar 

  9. Bhakta S, Scalacci N, Maitra A, Brown AK, Dasugari S, Evangelopoulos D, McHugh TD, Mortazavi PN, Twist A, Petricci E, Manetti F, Castagnolo D (2016) Design and synthesis of 1-((1,5-bis(4-chlorophenyl)-2-methyl-1 H -Pyrrol-3-yl)methyl)-4-methylpiperazine (BM212) and N -adamantan-2-Yl- N ′-(( E )-3,7-dimethylocta-2,6-dienyl)ethane-1,2-diamine (SQ109) pyrrole hybrid derivatives: discovery of potent antitubercular agents effective against multidrug-resistant mycobacteria. J Med Chem 59(6):2780–2793. https://doi.org/10.1021/acs.jmedchem.6b00031

    Article  CAS  PubMed  Google Scholar 

  10. Zhang B, Li J, Yang X, Wu L, Zhang J, Yang Y, Zhao Y, Zhang L, Yang X, Yang X, Cheng X, Liu Z, Jiang B, Jiang H, Guddat LW, Yang H, Rao Z (2019) Crystal structures of membrane transporter MmpL3, an anti-TB drug target. Cell 176(3):636-648.e13. https://doi.org/10.1016/j.cell.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  11. Jia L, Tomaszewski JE, Hanrahan C, Coward L, Noker P, Gorman G, Nikonenko B, Protopopova M (2005) Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug: SQ109 antitubercular activity and pharmacokinetics. Br J Pharmacol 144(1):80–87. https://doi.org/10.1038/sj.bjp.0705984

    Article  CAS  PubMed  Google Scholar 

  12. Jia L, Noker PE, Coward L, Gorman GS, Protopopova M, Tomaszewski JE (2006) Interspecies pharmacokinetics and in vitro metabolism of SQ109: interspecies pharmacokinetics of SQ109. Br J Pharmacol 147(5):476–485. https://doi.org/10.1038/sj.bjp.0706650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reddy VM, Einck L, Andries K, Nacy CA (2010) In vitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob Agents Chemother 54(7):2840–2846. https://doi.org/10.1128/AAC.01601-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thanna S, Sucheck SJ (2016) Targeting the trehalose utilization pathways of Mycobacterium tuberculosis. MedChemComm 7(1):69–85. https://doi.org/10.1039/C5MD00376H

    Article  CAS  PubMed  Google Scholar 

  15. Chalut C (2016) MmpL Transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria. Tuberculosis 100:32–45. https://doi.org/10.1016/j.tube.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  16. Viljoen A, Dubois V, Girard-Misguich F, Blaise M, Herrmann J-L, Kremer L (2017) The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments: MmpL structure and diversity in mycobacteria. Mol Microbiol 104(6):889–904. https://doi.org/10.1111/mmi.13675

    Article  CAS  PubMed  Google Scholar 

  17. Varela C, Rittmann D, Singh A, Krumbach K, Bhatt K, Eggeling L, Besra GS, Bhatt A (2012) MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem Biol 19(4):498–506. https://doi.org/10.1016/j.chembiol.2012.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grzegorzewicz AE, Pham H, Gundi VAKB, Scherman MS, North EJ, Hess T, Jones V, Gruppo V, Born SEM, Korduláková J, Chavadi SS, Morisseau C, Lenaerts AJ, Lee RE, McNeil MR, Jackson M (2012) Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8(4):334–341. https://doi.org/10.1038/nchembio.794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Owens CP, Chim N, Goulding CW (2013) Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target. Future Med Chem 5(12):1391–1403. https://doi.org/10.4155/fmc.13.109

    Article  CAS  PubMed  Google Scholar 

  20. Li W, Stevens CM, Pandya AN, Darzynkiewicz Z, Bhattarai P, Tong W, Gonzalez-Juarrero M, North EJ, Zgurskaya HI, Jackson M (2019) Direct inhibition of MmpL3 by novel antitubercular compounds. ACS Infect Dis 5(6):1001–1012. https://doi.org/10.1021/acsinfecdis.9b00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stanley SA, Grant SS, Kawate T, Iwase N, Shimizu M, Wivagg C, Silvis M, Kazyanskaya E, Aquadro J, Golas A, Fitzgerald M, Dai H, Zhang L, Hung DT (2012) Identification of novel inhibitors of M. Tuberculosis growth using whole cell based high-throughput screening. ACS Chem Biol 7(8):1377–1384. https://doi.org/10.1021/cb300151m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson M, McNeil MR, Brennan PJ (2013) Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol 8(7):855–875. https://doi.org/10.2217/fmb.13.52

    Article  CAS  PubMed  Google Scholar 

  23. Rayasam GV (2014) MmpL3 a potential new target for development of novel anti-tuberculosis drugs. Expert Opin Ther Targets 18(3):247–256. https://doi.org/10.1517/14728222.2014.859677

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Upadhyay A, Fontes FL, North EJ, Wang Y, Crans DC, Grzegorzewicz AE, Jones V, Franzblau SG, Lee RE, Crick DC, Jackson M (2014) Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(11):6413–6423. https://doi.org/10.1128/AAC.03229-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sacksteder KA, Protopopova M, Barry CE, Andries K, Nacy CA (2012) Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol 7(7):823–837. https://doi.org/10.2217/fmb.12.56

    Article  CAS  PubMed  Google Scholar 

  26. Scherman MS, North EJ, Jones V, Hess TN, Grzegorzewicz AE, Kasagami T, Kim I-H, Merzlikin O, Lenaerts AJ, Lee RE, Jackson M, Morisseau C, McNeil MR (2012) Screening a library of 1600 adamantyl ureas for anti-Mycobacterium tuberculosis activity in vitro and for better physical chemical properties for bioavailability. Bioorg Med Chem 20(10):3255–3262. https://doi.org/10.1016/j.bmc.2012.03.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rao SPS, Lakshminarayana SB, Kondreddi RR, Herve M, Camacho LR, Bifani P, Kalapala SK, Jiricek J, Ma NL, Tan BH, Ng SH, Nanjundappa M, Ravindran S, Seah PG, Thayalan P, Lim SH, Lee BH, Goh A, Barnes WS, Chen Z, Gagaring K, Chatterjee AK, Pethe K, Kuhen K, Walker J, Feng G, Babu S, Zhang L, Blasco F, Beer D, Weaver M, Dartois V, Glynne R, Dick T, Smith PW, Diagana TT, Manjunatha UH (2013) Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis. Sci Transl Med 5(214):214ra168. https://doi.org/10.1126/scitranslmed.3007355

  28. Stec J, Onajole OK, Lun S, Guo H, Merenbloom B, Vistoli G, Bishai WR, Kozikowski AP (2016) Indole-2-carboxamide-based MmpL3 inhibitors show exceptional antitubercular activity in an animal model of tuberculosis infection. J Med Chem 59(13):6232–6247. https://doi.org/10.1021/acs.jmedchem.6b00415

    Article  CAS  PubMed  Google Scholar 

  29. Manjunatha UH, Smith PW (2015) Perspective: challenges and opportunities in TB drug discovery from phenotypic screening. Bioorg Med Chem 23(16):5087–5097. https://doi.org/10.1016/j.bmc.2014.12.031

    Article  CAS  PubMed  Google Scholar 

  30. Rosa VL, Poce G, Canseco JO, Buroni S, Pasca MR, Biava M, Raju RM, Porretta GC, Alfonso S, Battilocchio C, Javid B, Sorrentino F, Ioerger TR, Sacchettini JC, Manetti F, Botta M, Logu AD, Rubin EJ, Rossi ED (2012) MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212. Antimicrob Agents Chemother 56(1):8

    Google Scholar 

  31. Ballell L, Bates RH, Young RJ, Alvarez-Gomez D, Alvarez-Ruiz E, Barroso V, Blanco D, Crespo B, Escribano J, González R, Lozano S, Huss S, Santos-Villarejo A, Martín-Plaza JJ, Mendoza A, Rebollo-Lopez MJ, Remuiñan-Blanco M, Lavandera JL, Pérez-Herran E, Gamo-Benito FJ, García-Bustos JF, Barros D, Castro JP, Cammack N (2013) Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem 8(2):313–321. https://doi.org/10.1002/cmdc.201200428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Remuiñán MJ, Pérez-Herrán E, Rullás J, Alemparte C, Martínez-Hoyos M, Dow DJ, Afari J, Mehta N, Esquivias J, Jiménez E, Ortega-Muro F, Fraile-Gabaldón MT, Spivey VL, Loman NJ, Pallen MJ, Constantinidou C, Minick DJ, Cacho M, Rebollo-López MJ, González C, Sousa V, Angulo-Barturen I, Mendoza-Losana A, Barros D, Besra GS, Ballell L, Cammack N (2013) Tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide and N-benzyl-6′,7′-dihydrospiro[piperidine-4,4′-thieno[3,2-c]pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis Targeting MmpL3. PLoS ONE 8(4):e60933. https://doi.org/10.1371/journal.pone.0060933

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dupont C, Viljoen A, Dubar F, Blaise M, Bernut A, Pawlik A, Bouchier C, Brosch R, Guérardel Y, Lelièvre J, Ballell L, Herrmann J-L, Biot C, Kremer L (2016) A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus: inhibiting mycolic acid transport in M. Abscessus. Mol Microbiol 101(3):515–529. https://doi.org/10.1111/mmi.13406

    Article  CAS  PubMed  Google Scholar 

  34. Dupont C, Chen Y, Xu Z, Roquet-Banères F, Blaise M, Witt A-K, Dubar F, Biot C, Guérardel Y, Maurer FP, Chng S-S, Kremer L (2019) A Piperidinol-Containing molecule is active against Mycobacterium tuberculosis by inhibiting the mycolic acid flippase activity of MmpL3. J Biol Chem 294(46):17512–17523. https://doi.org/10.1074/jbc.RA119.010135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng H, Williams JT, Coulson GB, Haiderer ER, Abramovitch RB (2018) HC2091 kills Mycobacterium tuberculosis by targeting the MmpL3 mycolic acid transporter. Antimicrob Agents Chemother 62(7):e02459-e2517. https://doi.org/10.1128/AAC.02459-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. World Health Organization (2018) Global tuberculosis report 2018. World Health Organization, Geneva

    Google Scholar 

  37. Ung KL, Alsarraf HMAB, Kremer L, Blaise M (2020) The crystal structure of the mycobacterial trehalose monomycolate transport factor A, TtfA, reveals an atypical fold. Proteins Struct Funct Bioinforma 88(6):809–815. https://doi.org/10.1002/prot.25863

    Article  CAS  Google Scholar 

  38. Yang X, Hu T, Yang X, Xu W, Yang H, Guddat LW, Zhang B, Rao Z (2020) Structural basis for the inhibition of mycobacterial MmpL3 by NITD-349 and SPIRO. J Mol Biol 432(16):4426–4434. https://doi.org/10.1016/j.jmb.2020.05.019

    Article  CAS  PubMed  Google Scholar 

  39. Su C-C, Klenotic PA, Cui M, Lyu M, Morgan CE, Yu EW (2021) Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport. PLOS Biol 19(8):e3001370. https://doi.org/10.1371/journal.pbio.3001370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adams O, Deme JC, Parker JL, Fowler PW, Lea SM, Newstead S (2021) Cryo-EM structure and resistance landscape of M. tuberculosis MmpL3: an emergent therapeutic target. Structure 29(10):1182–11914. https://doi.org/10.1016/j.str.2021.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Su C-C, Klenotic PA, Bolla JR, Purdy GE, Robinson CV, Yu EW (2019) MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proc Natl Acad Sci 116(23):11241–11246. https://doi.org/10.1073/pnas.1901346116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan T, Sampson NS (2018) Hit generation in TB drug discovery: from genome to granuloma. Chem Rev 118(4):1887–1916. https://doi.org/10.1021/acs.chemrev.7b00602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elitas M, Dhar N, McKinney JD (2021) Revealing antibiotic tolerance of the Mycobacterium smegmatis xanthine/uracil permease mutant using microfluidics and single-cell analysis. Antibiotics 10(7):794. https://doi.org/10.3390/antibiotics10070794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gengenbacher M, Kaufmann SHE (2012) Mycobacterium tuberculosis : success through dormancy. FEMS Microbiol Rev 36(3):514–532. https://doi.org/10.1111/j.1574-6976.2012.00331.x

    Article  CAS  PubMed  Google Scholar 

  45. Belardinelli JM, Yazidi A, Yang L, Fabre L, Li W, Jacques B, Angala SK, Rouiller I, Zgurskaya HI, Sygusch J, Jackson M (2016) Structure–function profile of MmpL3, the essential mycolic acid transporter from Mycobacterium tuberculosis. ACS Infect Dis 2(10):702–713. https://doi.org/10.1021/acsinfecdis.6b00095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li M, Phua ZY, Xi Y, Xu Z, Nyantakyi SA, Li W, Jackson M, Wong MW, Lam Y, Chng SS, Go ML, Dick T (2020) Potency Increase of Spiroketal Analogs of Membrane Inserting Indolyl Mannich Base Antimycobacterials Is Due to Acquisition of MmpL3 Inhibition. ACS Infect Dis 6(7):1882–1893. https://doi.org/10.1021/acsinfecdis.0c00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan S, Chan HCS, Hu Z (2017) Using PyMOL as a Platform for Computational Drug Design. WIREs Comput Mol Sci 7(2):e1298. https://doi.org/10.1002/wcms.1298

    Article  CAS  Google Scholar 

  48. Zuo K, Liang L, Du W, Sun X, Liu W, Gou X, Wan H, Hu J (2017) 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation of Pseudomonas Aeruginosa LpxC Inhibitors. Int J Mol Sci 18(5):761. https://doi.org/10.3390/ijms18050761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  50. Sun X, Liang L, Gu J, Zhuo W, Yan X, Xie T, Wu Z, Liu X, Gou X, Liu W, He G, Gan Y, Chang S, Shi H, Hu J (2019) Inhibition of Programmed Cell Death Protein Ligand-1 (PD-L1) by Benzyl Ether Derivatives: Analyses of Conformational Change, Molecular Recognition and Binding Free Energy. J Biomol Struct Dyn 37(18):4801–4812. https://doi.org/10.1080/07391102.2018.1563568

    Article  CAS  PubMed  Google Scholar 

  51. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J Comput Chem 19(14):1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14%3c1639::AID-JCC10%3e3.0.CO;2-B

    Article  CAS  Google Scholar 

  52. Du W, Zuo K, Sun X, Liu W, Yan X, Liang L, Wan H, Chen F, Hu J (2017) An Effective HIV-1 Integrase Inhibitor Screening Platform: Rationality Validation of Drug Screening, Conformational Mobility and Molecular Recognition Analysis for PFV Integrase Complex with Viral DNA. J Mol Graph Model 78:96–109. https://doi.org/10.1016/j.jmgm.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  53. Xie T, Wu Z, Gu J, Guo R, Yan X, Duan H, Liu X, Liu W, Liang L, Wan H, Luo Y, Tang D, Shi H, Hu J (2019) The Global Motion Affecting Electron Transfer in Plasmodium Falciparum Type II NADH Dehydrogenases: A Novel Non-Competitive Mechanism for Quinoline Ketone Derivative Inhibitors. Phys Chem Chem Phys 21(33):18105–18118. https://doi.org/10.1039/C9CP02645B

    Article  CAS  PubMed  Google Scholar 

  54. Hu J-P, He H-Q, Tang D-Y, Sun G-F, Zhang Y-Q, Fan J, Chang S (2013) Study on the Interactions between Diketo-Acid Inhibitors and Prototype Foamy Virus Integrase-DNA Complex via Molecular Docking and Comparative Molecular Dynamics Simulation Methods. J Biomol Struct Dyn 31(7):734–747. https://doi.org/10.1080/07391102.2012.709458

    Article  CAS  PubMed  Google Scholar 

  55. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J Comput Phys 23(3):327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  ADS  CAS  Google Scholar 

  57. Hegger R, Altis A, Nguyen PH, Stock G (2007) How Complex Is the Dynamics of Peptide Folding? Phys Rev Lett 98(2):028102. https://doi.org/10.1103/PhysRevLett.98.028102

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Kabsch W, Sander C (1983) Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 22(12):2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  PubMed  Google Scholar 

  59. Naïm M, Bhat S, Rankin KN, Dennis S, Chowdhury SF, Siddiqi I, Drabik P, Sulea T, Bayly CI, Jakalian A, Purisima EO (2007) Solvated Interaction Energy (SIE) for Scoring Protein−Ligand Binding Affinities. 1. Exploring the Parameter Space. J Chem Inf Model 47(1):122–133. https://doi.org/10.1021/ci600406v

    Article  CAS  PubMed  Google Scholar 

  60. Purisima EO, Nilar SH (1995) A Simple yet Accurate Boundary Element Method for Continuum Dielectric Calculations. J Comput Chem 16(6):681–689. https://doi.org/10.1002/jcc.540160604

    Article  CAS  Google Scholar 

  61. Purisima EO (1998) Fast Summation Boundary Element Method for Calculating Solvation Free Energies of Macromolecules. J Comput Chem 19(13):1494–1504. https://doi.org/10.1002/(SICI)1096-987X(199810)19:13%3c1494::AID-JCC6%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  62. Bhat S, Purisima EO (2005) Molecular Surface Generation Using a Variable-Radius Solvent Probe. Proteins Struct Funct Bioinforma 62(1):244–261. https://doi.org/10.1002/prot.20682

    Article  CAS  Google Scholar 

  63. Shetty A, Xu Z, Lakshmanan U, Hill J, Choong ML, Chng S-S, Yamada Y, Poulsen A, Dick T, Gengenbacher M (2018) Novel Acetamide Indirectly Targets Mycobacterial Transporter MmpL3 by Proton Motive Force Disruption. Front Microbiol 9:2960. https://doi.org/10.3389/fmicb.2018.02960

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bolla JR (2020) Targeting MmpL3 for Anti-Tuberculosis Drug Development. Biochem Soc Trans 48(4):1463–1472. https://doi.org/10.1042/BST20190950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Klenotic PA, Moseng MA, Morgan CE, Yu EW (2021) Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Chem Rev 121(9):5378–5416. https://doi.org/10.1021/acs.chemrev.0c00621

    Article  CAS  PubMed  Google Scholar 

  66. Yang A-S, Honig B (2000) An Integrated Approach to the Analysis and Modeling of Protein Sequences and Structures. III. A Comparative Study of Sequence Conservation in Protein Structural Families Using Multiple Structural Alignments 1 1Edited by F. E. Cohen. J Mol Biol 301(3):691–711. https://doi.org/10.1006/jmbi.2000.3975

    Article  CAS  PubMed  Google Scholar 

  67. Zobayer N, Hossain ABMA (2018) In Silico Characterization and Homology Modeling of Histamine Receptors. J Biol Sci 18(4):178–191. https://doi.org/10.3923/jbs.2018.178.191

    Article  CAS  Google Scholar 

  68. Rozario LT, Sharker T, Nila TA (2021) In Silico Analysis of Deleterious SNPs of Human MTUS1 Gene and Their Impacts on Subsequent Protein Structure and Function. PLoS One 16(6):e0252932. https://doi.org/10.1371/journal.pone.0252932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brylinski M, Kochanczyk M, Broniatowska E, Roterman I (2007) Localization of Ligand Binding Site in Proteins Identified in Silico. J Mol Model 13(6–7):665–675. https://doi.org/10.1007/s00894-007-0191-x

    Article  CAS  PubMed  Google Scholar 

  70. O’Brien EP, Brooks BR, Thirumalai D (2009) Molecular Origin of Constant M-Values, Denatured State Collapse, and Residue-Dependent Transition Midpoints in Globular Proteins. Biochemistry 48(17):3743–3754. https://doi.org/10.1021/bi8021119

    Article  CAS  PubMed  Google Scholar 

  71. Feig M, Karanicolas J, Brooks CL (2004) MMTSB Tool Set: Enhanced Sampling and Multiscale Modeling Methods for Applications in Structural Biology. J Mol Graph Model 22(5):377–395. https://doi.org/10.1016/j.jmgm.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  72. Liu X, Zhang Y, Duan H, Luo Q, Liu W, Liang L, Wan H, Chang S, Hu J, Shi H (2020) Inhibition Mechanism of Indoleamine 2, 3-Dioxygenase 1 (IDO1) by Amidoxime Derivatives and Its Revelation in Drug Design: Comparative Molecular Dynamics Simulations. Front Mol Biosci 6:164. https://doi.org/10.3389/fmolb.2019.00164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP (1996) HOLE: A Program for the Analysis of the Pore Dimensions of Ion Channel Structural Models. J Mol Graph 14(6):354–360. https://doi.org/10.1016/S0263-7855(97)00009-X

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Research and Development Plan in Key Areas of Guangdong Province (2022B1111050003).

Author information

Authors and Affiliations

Authors

Contributions

YG: resources, writing original draft. QL: conceptualization, resources. LL: review, editing. QS: visualization. ZZ: data mining. XY and LT: project administration, supervision. LL: project administration, supervision, methodology. JH and WO: funding acquisition.

Corresponding authors

Correspondence to Jianping Hu or Weiwei Ouyang.

Ethics declarations

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key messages

• The initial structure used for subsequent MD simulations is provided and verified through homology modeling and rational mutation.

• The convergence trajectories of four systems (WT_apo, S288T_apo, WT_SQ109, and S288T_SQ109) are obtained by all-atom comparison MD simulations.

• A series of molecular simulation strategies were adopted to deeply understand the structural and hydrogen bond network changes caused by S288T mutation in Mtb MmpL3 and then to provide possible drug resistance against SQ109.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 804 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Luo, Q., Liu, L. et al. S288T mutation altering MmpL3 periplasmic domain channel and H-bond network: a novel dual drug resistance mechanism. J Mol Model 30, 39 (2024). https://doi.org/10.1007/s00894-023-05814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05814-y

Keywords

Navigation