Skip to main content
Log in

Structural, electronic, and optical properties of three types Ca3N2 from first-principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

To find the potential value of Ca3N2 in the field of optoelectronics, the physical properties of Ca3N2 will be analyzed. It can be concluded from the electronic properties that the Ca-N bonds of α-Ca3N2 are more stable than those of δ-Ca3N2 and ε-Ca3N2. The dielectric function, reflectivity function, and absorption function of three types of Ca3N2 were accurately calculated, and it was concluded that α-Ca3N2, δ-Ca3N2, and ε-Ca3N2 have greater transmittance for visible light and exhibit optical transparency in the near-infrared frequency domain. Combined with the high hardness, strong bonding, high melting point, and wear resistance of Ca3N2, Ca3N2 can be used as a new generation of window heat-resistant materials. The α-Ca3N2, δ-Ca3N2, and ε-Ca3N2 are indirect, direct, and indirect narrow bandgap compounds, respectively, that is, δ-Ca3N2 is more suitable for luminescent materials than α-Ca3N2 and ε-Ca3N2. α-Ca3N2 and δ-Ca3N2 have high reflective properties in the ultraviolet region and can be used as UV protective coatings. All three Ca3N2 materials can be used industrially to synthesize photovoltaic devices that operate in the ultraviolet region.

Methods

Based on the first-principles of density functional theory calculations, the structures, electronic properties, and optical properties of α-Ca3N2, δ-Ca3N2, and ε-Ca3N2 were calculated. The calculation results show that although the α-Ca3N2, δ-Ca3N2, and ε-Ca3N2 have similar electronic structures, some phases have better properties in some aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request and available within the article.

References

  1. Xu B, Tian YJ (2015) Superhard materials: recent research progress and prospects. Sci China Mater 58:132–142

    Article  CAS  Google Scholar 

  2. Zou L, Dong GJ, Zhou M (2013) Investigation on frictional wear of single crystal diamond against ferrous metals. Int Journal of Refract Met Hard Mater 41:174–179

    Article  CAS  Google Scholar 

  3. Gordon S, Besharatloo H, Wheeler JM, Rodriguez-Suarez T, Roa JJ, Jiménez-Piqué E, Llanes L (2023) Micromechanical mapping of polycrystalline cubic boron nitride composites by means of high-speed nanoindentation: assessment of microstructural assemblage effects. J Eur Ceram Soc 43:2968–2975

    Article  CAS  Google Scholar 

  4. Qiu SZ, Li BX, Zhang XD (1990) Vibrational spectrum of hexagonal boron nitride and synthesis of cubic boron nitride, Chinese Journal of High Pressure. Physics 4:29–35

    Google Scholar 

  5. Wu JK, Zhang ZC, Wang HK, Wang C, Hou ZQ, Wu DZ, Ouyang XP (2023) High-pressure synthesis of tungsten carbide–cubic boron nitride (WC–cBN) composites: effect of cBN particle size and volume fraction on their microstructure and properties. Int J Refract Metal Hard Mater 110:106037–106044

    Article  CAS  Google Scholar 

  6. Tian YJ, Xu B, Yu DL, Ma YM, Wang YB, Jiang YB, Hu WT, Tang CC, Gao YF, Luo K, Zhao ZS, Wang LM, Wen B, He JL, Liu ZY (2013) Ultrahard nanotwinned cubic boron nitride. Nature 493:385–388

    Article  CAS  PubMed  Google Scholar 

  7. Hao J, Li YW, Wang JS, Ma CL, Huang LY, Liu R, Cui QL, Zou GT, Liu J, Li XD (2010) Experimental determinations of the high-pressure crystal structures of Ca3N2. J Phys Chem C 114:16750–16755

    Article  CAS  Google Scholar 

  8. Fujisaki Y, Kijima T, Ishiwara H (2001) High-performance metal–ferroelectric–insulator–semiconductor structures with a damage-free and hydrogen-free silicon–nitride buffer layer. Appl Phys Lett 78:1285–1287

    Article  CAS  Google Scholar 

  9. Mui DSL, Liaw H, Demirel AL, Strite S, Morkoç H (1991) Electrical characteristics of Si3N4/Si/GaAs metal-insulator-semiconductor capacitor. Appl Phys Lett 59:2847–2849

    Article  CAS  Google Scholar 

  10. Römer SR, Dörfler T, Kroll P, Schnick W (2009) Group II element nitrides M3N2 under pressure: a comparative density functional study. Phys Status Solidi B 246:1604–1613

    Article  Google Scholar 

  11. Braun C, Börger SL, Boyko TD, Miehe G, Ehrenberg H, Höhn P, Moewes A, Schnick W (2011) Ca3N2 and Mg3N2: unpredicted high-pressure behavior of binary nitrides. J Am Chem Soc 133:4307–4315

    Article  CAS  PubMed  Google Scholar 

  12. Imai Y, Watanabe A (2006) Electronic structures of Mg3Pn2 (Pn=N, P, As, Sb and Bi) and Ca3N2 calculated by a first-principle pseudopotential method. J Mater Sci 41:2435–2441

    Article  CAS  Google Scholar 

  13. Höhn P, Hoffmann S, Hunger J, Leoni S, Nitsche F, Schnelle W, Kniep R (2009) β-Ca3N2, a metastable nitride in the system Ca–N. Chemistry–A Eur J 15:3419–3425

    Article  Google Scholar 

  14. Römer SR, Schnick W, Kroll P (2009) Density functional study of calcium nitride: refined geometries and prediction of high-pressure phases. J Phys Chem C 113:2943–2949

    Article  Google Scholar 

  15. Hao J, Li YW, Zhou Q, Liu D, Li M, Li FF, Lei WW, Chen XH, Ma YM, Cui QL, Zou GT, Liu J, Li XD (2009) Structural phase transformations of Mg3N2 at high pressure: experimental and theoretical studies. Inorg Chem 48:9737–9741

    Article  CAS  PubMed  Google Scholar 

  16. Heyns AM, Prinsloo LC, Range KJ, Stassen M (1998) The vibrational spectra and decomposition of a-calcium nitride (a-Ca3N2) and magnesium nitride (Mg3N2). J Solid State Chem 137:33–41

    Article  CAS  Google Scholar 

  17. Guo WL, Chen LX, Ma HA, Zhu PW, Jia XP, Zhou GT (2006) Synthesis of cBN using Ca3N2 and M3N2, Diamond and Abrasives. Engineering 3:11–13

    Google Scholar 

  18. Boćkowski M, Grzegory I, Kchahapuridze A, Gierlotka S, Porowski S (2010) Ca3N2 as a flux for crystallization of GaN. J Cryst Growth 312:2574–2578

    Article  Google Scholar 

  19. Vehicular OB, Borane A, Borohydrides M (2003) Hydrogen storage materials. Material Matters 159:81–112

    Google Scholar 

  20. Xiong ZT, Chen P, Wu GT, Lin JY, Lee Tan K (2003) Investigations into the interaction between hydrogen and calcium nitride. J Mater Chem 13:1676–1680

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  22. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570

    Article  CAS  Google Scholar 

  23. Monkhorst HJ, Pack JD (1976) Special points for Brillonin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  24. Lebègue S (2007) Electronic structure and properties of the Fermi surface of the superconductor LaOFeP. Phys Rev B 75(035110):1–5

    Google Scholar 

  25. Jungwirth T, Sinova J, MacDonald AH, Gallagher BL, Novák V, Edmonds KW, Rushforth AW, Campion RP, Foxon CT, Eaves L, Olejník K, Masek J, Eric Yang SR, Wunderlich J, Gould C, Molenkamp LW, Dietl T, Ohno H (2007) On the character of states near the Fermi level in (Ga, Mn)As: impurity to valence band crossover. Phys Rev B 76:125206

    Article  Google Scholar 

  26. Ovshinsky SR, Adler D (1978) Local structure, bonding, and electronic properties of covalent amorphous semiconductors. Contemp Phys 19:109–126

    Article  CAS  Google Scholar 

  27. Zhang SL, Yan Z, Li YF, Chen ZF, Zeng HB (2015) Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew Chem Int Ed 54:3112–3115

    Article  CAS  Google Scholar 

  28. Pan L, Lu TC, Su R, Wang YZ, Qi JQ, Fu J, Zhang Y, He DW (2012) Study on the electronic structure and optical properties of γ-AION crystal. Acta Phys Sin 61:027101–0271017

    Article  Google Scholar 

  29. Jaffery SHA, Riaz M, Abbas Z, Dastgeer G, Aftab S, Hussain S, Ali M, Jung JW (2022) Strong interlayer transition in a staggered gap GeSe/MoTe2 heterojunction diode for highly efficient visible and near-infrared photodetection and logic inverter. EcoMat 129:1–14

    Google Scholar 

  30. Mirza SH, Azam S, Abbas Z, Muhammad S (2023) Enlightening the impact of TM doping on structural, electronic and magnetic properties of ceria for ReRAM applications: a GGA + U study. Chem Pap 77:5481–5494

    Article  CAS  Google Scholar 

  31. Jaffery SHA, Dastgeer G, Hussain M, Ali A, Hussain S, Ali M, Jung J (2022) Near-direct band alignment of MoTe2/ReSe2 type-II p-n heterojunction for efficient VNIR photodetection. 7: 1–10

  32. Liu WH, Liu QJ, Zhong M, Gan YD, Liu FS, Li XH, Tang B (2022) Predicting impact sensitivity of energetic materials: insights fromenergy transfer of carriers. Acta Mater 236:118137–118148

    Article  CAS  Google Scholar 

  33. Yoder MN (1996) Wide bandgap semiconductor materials and devices. IEEE Trans Electron Devices 43:1633–1636

    Article  CAS  Google Scholar 

  34. Wang J, Li CM, Ao J, Li F, Chen ZQ (2013) Study on the elastic and optical properties of group IVB transition metal nitrides. Acta Phys Sin 62:087102–087111

    Article  Google Scholar 

  35. Gray HB, Benjamin WA (1965) Electrons and chemical bonding, Columbia University

  36. Abubakr M, Fatima K, Abbas Z, Gorczyca I, Irfan M, Muhammad S, Khan MA, Alarfaji SS (2021) Study of structural, optoelectronic and magnetic properties of Half-Heusler compounds QEuPa (Q= Ba, be, Mg, Sr) using first-principles method. J Solid State Chem 304:122612–122625

    Article  CAS  Google Scholar 

  37. Abubakr M, Abbas Z, Rehman S, Hassan NU, Ifseisi AA, Khan MA, Kim H, Khan K, Kim D, Khan MF (2023) Systematic study on the optoelectronic and elastic properties of Cu-based ternary chalcogenides: using ab-initio approach. Mater Sci Semicond Process 162:107512–107523

    Article  CAS  Google Scholar 

  38. Zhang XB, Taliercio T, Kolliakos S, Lefebvre P (2001) Influence of electron–phonon interaction on the optical properties of III nitride semiconductors. J Phys: Condens Matter 13:7053–7074

    CAS  Google Scholar 

  39. Abbas Z, Naz A, Hussain S, Muhammad S, Algarni H, Ali A, Jung JW (2023) First-principles calculations to investigate structural, electronic, optical and magnetic properties of pyrochlore oxides Eu2Tm2O7 (Tm = Hf, Sn, Zr) for energy applications. Inorganics 193:1–13

    Google Scholar 

  40. Ching WV (1990) Theoretical studies of the electronic properties of ceramic materials. J Am Ceram Soc 73:3135–3160

    Article  CAS  Google Scholar 

  41. Bocquet AE, Mizokawa T, Morikawa K, Fujimori A, Barman SR, Maiti K, Sarma DD, Tokura Y, Onoda M (1996) Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra. Phys Rev B 53:1161–1170

    Article  CAS  Google Scholar 

  42. Abbas Z, Fatima I, Gorczyca SHA, Jaffery A, Ali M, Irfan HH, Raza H, Algarni S, Muhammad H, Teisseyre S, Hussain SM, Siddeeg J (2023) Jung, First-principles calculations to investigate electronic, optical, and thermoelectric properties of Na2GeX3 (X = S, Se, Te) for energy applications. Mater Sci Semicond Process 154:107206–107216

    Article  CAS  Google Scholar 

  43. Fatima K, Abbas Z, Butt F, Butt K, Hussain S, Ali A, Muhammad S, Algarni H, Al-Sehemi AG (2023) First-principles quantum analysis of promising double perovskites Z2SiF6 (Z = K, Li, Na, Rb) as prospective light harvesting materials: optoelectronic, structural and thermodynamic properties. Int J Quantum Chem 123:1–18

    Article  Google Scholar 

  44. Sharma I, Hassanien AS (2020) Effect of Ge-addition on physical and optical properties of chalcogenide Pb10Se90-xGex bulk glasses and thin films. J Non-Cryst Solids 548:120326–120337

    Article  CAS  Google Scholar 

  45. Saha S, Sinha TP, Mookerjee A (2000) Structural and optical properties of paraelectric SrTiO3. J Phys: Condens Matter 12:3325–3336

    CAS  Google Scholar 

  46. Gao J, Liu QJ, Tang B (2023) Elastic stability criteria of seven crystal systems and their application under pressure: taking carbon as an example. J Appl Phys 133:135910

    Article  Google Scholar 

  47. Li WG, Liu QJ, Liu FS, Liu ZT (2023) Atomic mean square displacement study of the bond breaking mechanism of energetic materials before explosive initiation. Phys Chem Chem Phys 25:5613

    Article  CAS  PubMed  Google Scholar 

  48. Zhang DB, Wang K, Chen S, Zhang LF, Ni YX, Zhang G (2023) Regulating the thermal conductivity of monolayer MnPS3 by a magnetic phase transition. Nanoscale 15:1180

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the 22th Key Laboratory Open Project of Southwest Jiaotong University (Grant No. ZD202313003).

Author information

Authors and Affiliations

Authors

Contributions

J.H. Tan:Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing-original draft. Y.Y. Lin:Investigation, Methodology, Writing - review & editing. Q.J. Liu: Conceptualization, Funding acquisition, Project administration, Resources, Methodology, Writing - review & editing. F.S. Liu: Conceptualization, Methodology, Writing - review & editing. Z.T. Liu: Methodology, Software, Writing - review & editing. X. Yang: Conceptualization, Supervision, Writing - review & editing.

Corresponding author

Correspondence to Xue Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, JH., Lin, YY., Liu, QJ. et al. Structural, electronic, and optical properties of three types Ca3N2 from first-principles study. J Mol Model 30, 9 (2024). https://doi.org/10.1007/s00894-023-05804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05804-0

Keywords

Navigation